Untitled
/** * 124. Binary Tree Maximum Path Sum * Hard * A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root. * * The path sum of a path is the sum of the node's values in the path. * * Given the root of a binary tree, return the maximum path sum of any non-empty path. * * * * Example 1: * * * Input: root = [1,2,3] * Output: 6 * Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6. * Example 2: * * * Input: root = [-10,9,20,null,null,15,7] * Output: 42 * Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42. * * * Constraints: * * The number of nodes in the tree is in the range [1, 3 * 10^4]. * -1000 <= Node.val <= 1000 */ class TreeNode { val: number left: TreeNode | null right: TreeNode | null constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { this.val = (val===undefined ? 0 : val) this.left = (left===undefined ? null : left) this.right = (right===undefined ? null : right) } } function maxPathSum(root: TreeNode | null): number { }; console.log(maxPathSum(new TreeNode(1, new TreeNode(2), new TreeNode(3))) === 6); console.log(maxPathSum(new TreeNode(-10, new TreeNode(9), new TreeNode(20, new TreeNode(15), new TreeNode(7)))) === 42);
Leave a Comment