Untitled
unknown
plain_text
3 years ago
5.3 kB
7
Indexable
from __future__ import annotations
from typing import Protocol, Iterator, Tuple, TypeVar, Optional
T = TypeVar('T')
Location = TypeVar('Location')
class Graph(Protocol):
def neighbors(self, id: Location) -> list[Location]: pass
import collections
class Queue:
def __init__(self):
self.elements = collections.deque()
def empty(self) -> bool:
return not self.elements
def put(self, x: T):
self.elements.append(x)
def get(self) -> T:
return self.elements.popleft()
def from_id_width(id, width):
return (id % width, id // width)
def draw_tile(graph, id, style):
r = " . "
if 'number' in style and id in style['number']: r = " %-2d" % style['number'][id]
if 'point_to' in style and style['point_to'].get(id, None) is not None:
(x1, y1) = id
(x2, y2) = style['point_to'][id]
if x2 == x1 + 1: r = " > "
if x2 == x1 - 1: r = " < "
if y2 == y1 + 1: r = " v "
if y2 == y1 - 1: r = " ^ "
if 'path' in style and id in style['path']: r = " @ "
if 'start' in style and id == style['start']: r = " A "
if 'goal' in style and id == style['goal']: r = " Z "
if id in graph.walls: r = "###"
return r
def draw_grid(graph, **style):
print("___" * graph.width)
for y in range(graph.height):
for x in range(graph.width):
print("%s" % draw_tile(graph, (x, y), style), end="")
print()
print("~~~" * graph.width)
# data from main article
DIAGRAM1_WALLS = [from_id_width(id, width=30) for id in [21,22,51,52,81,82,93,94,111,112,123,124,133,134,141,142,153,154,163,164,171,172,173,174,175,183,184,193,194,201,202,203,204,205,213,214,223,224,243,244,253,254,273,274,283,284,303,304,313,314,333,334,343,344,373,374,403,404,433,434]]
GridLocation = Tuple[int, int]
class SquareGrid:
def __init__(self, width: int, height: int):
self.width = width
self.height = height
self.walls: list[GridLocation] = []
def in_bounds(self, id: GridLocation) -> bool:
(x, y) = id
return 0 <= x < self.width and 0 <= y < self.height
def passable(self, id: GridLocation) -> bool:
return id not in self.walls
def neighbors(self, id: GridLocation) -> Iterator[GridLocation]:
(x, y) = id
neighbors = [(x+1, y), (x-1, y), (x, y-1), (x, y+1)] # E W N S
# see "Ugly paths" section for an explanation:
if (x + y) % 2 == 0: neighbors.reverse() # S N W E
results = filter(self.in_bounds, neighbors)
results = filter(self.passable, results)
return results
class WeightedGraph(Graph):
def cost(self, from_id: Location, to_id: Location) -> float: pass
class GridWithWeights(SquareGrid):
def __init__(self, width: int, height: int):
super().__init__(width, height)
self.weights: dict[GridLocation, float] = {}
def cost(self, from_node: GridLocation, to_node: GridLocation) -> float:
return self.weights.get(to_node, 1)
diagram4 = GridWithWeights(10, 10)
diagram4.walls = [(1, 7), (1, 8), (2, 7), (2, 8), (3, 7), (3, 8,), (3,1), (3,5), (7,1), (8,0)]
diagram4.weights = {loc: 5 for loc in [(3, 4), (3, 5), (4, 1), (4, 2),
(4, 3), (4, 4), (4, 5), (4, 6),
(4, 7), (4, 8), (5, 1), (5, 2),
(5, 3), (5, 4), (5, 5), (5, 6),
(5, 7), (5, 8), (6, 2), (6, 3),
(6, 4), (6, 5), (6, 6), (6, 7),
(7, 3), (7, 4), (7, 5)]}
import heapq
class PriorityQueue:
def __init__(self):
self.elements: list[tuple[float, T]] = []
def empty(self) -> bool:
return not self.elements
def put(self, item: T, priority: float):
heapq.heappush(self.elements, (priority, item))
def get(self) -> T:
return heapq.heappop(self.elements)[1]
def heuristic(a: GridLocation, b: GridLocation) -> float:
(x1, y1) = a
(x2, y2) = b
return abs(x1 - x2) + abs(y1 - y2)
def a_star_search(graph: WeightedGraph, start: Location, goal: Location):
frontier = PriorityQueue()
frontier.put(start, 0)
came_from: dict[Location, Optional[Location]] = {}
cost_so_far: dict[Location, float] = {}
came_from[start] = None
cost_so_far[start] = 0
while not frontier.empty():
current: Location = frontier.get()
if current == goal:
break
for next in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current, next)
if next not in cost_so_far or new_cost < cost_so_far[next]:
cost_so_far[next] = new_cost
priority = new_cost + heuristic(next, goal)
frontier.put(next, priority)
came_from[next] = current
draw_grid(diagram4, number=cost_so_far, start=start, goal=goal)
print("***********\n")
return came_from, cost_so_far
start, goal = (1, 1), (8, 3)
came_from, cost_so_far = a_star_search(diagram4, start, goal)
draw_grid(diagram4, number=cost_so_far, start=start, goal=goal)
print(f"Total moves: {max(cost_so_far.values())}")Editor is loading...