Untitled
unknown
plain_text
3 years ago
513 B
69
Indexable
class LinearRegression:
def fit(self, train_features, train_target, **kwargs):
X = np.concatenate((np.ones((train_features.shape[0], 1)), train_features), axis=1)
y = train_target
w = ((np.linalg.inv(X.T @ X) @ X.T) @ y)
if 'key' in kwargs:
key = kwargs['key']
self.w = inv(key) @ w[1:]
else:
self.w = w[1:]
self.w0 = w[0]
def predict(self, test_features):
return test_features.dot(self.w) + self.w0Editor is loading...