Untitled
unknown
python
2 years ago
812 B
6
Indexable
import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score df = pd.read_csv('visitors.csv') X_train, X_test, y_train, y_test = train_test_split(df[['interests', 'n_stands']], df['rating'], test_size=0.2) regModel = LinearRegression() regModel.fit(X_train, y_train) y_pred = regModel.predict(X_test) accuracy = regModel.score(X_test, y_test) mae = mean_absolute_error(y_test, y_pred) mse = mean_squared_error(y_test, y_pred) rmse = np.sqrt(mse) r2 = r2_score(y_test, y_pred) print('Accuracy:', accuracy) print('MAE:', mae) print('MSE:', mse) print('RMSE:', rmse) print("R-squared score:", r2)
Editor is loading...