Untitled
unknown
plain_text
2 years ago
1.6 kB
3
Indexable
## dockerfile FROM python:3.8.10 WORKDIR /app COPY . /app RUN pip install -r requirements.txt EXPOSE 8501 HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health ENTRYPOINT ["streamlit", "run", "home.py", "--server.port=8501", "--server.address=0.0.0.0"] ## home.py import streamlit as st import pandas as pd from orion import Orion from utils import plot from tensorflow.keras.utils import plot_model data = pd.read_csv('data/543341.csv', usecols=['Date', 'No. of Trades'], parse_dates=['Date']) data.rename(columns={'No. of Trades': 'value', 'Date': 'timestamp'}, inplace=True) data.sort_values(by='timestamp', inplace=True) data.timestamp = (data.timestamp - pd.Timestamp("1970-01-01")) // pd.Timedelta("1s") data.head() known_anomalies = pd.DataFrame({ 'start': [1648751400], 'end': [1661970599] }) known_anomalies hyperparameters = { "mlprimitives.custom.timeseries_preprocessing.rolling_window_sequences#1": { 'target_column': 0, 'window_size': 100 }, 'keras.Sequential.LSTMSeq2Seq#1': { 'epochs': 15, 'verbose': True, 'window_size': 100, 'input_shape': [100, 1], 'target_shape': [100, 1] } } orion = Orion( pipeline='lstm_autoencoder', hyperparameters=hyperparameters ) anomalies = orion.fit_detect(data) anomalies plotImg = plot(data, 'Sharpline Broadcast Ltd. (543341)', anomalies=[anomalies, known_anomalies]) st.title("Anomalies Detection") st.dataframe(anomalies) st.pyplot(plotImg, True)
Editor is loading...