Untitled
unknown
plain_text
2 years ago
1.6 kB
6
Indexable
## dockerfile
FROM python:3.8.10
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
EXPOSE 8501
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
ENTRYPOINT ["streamlit", "run", "home.py", "--server.port=8501", "--server.address=0.0.0.0"]
## home.py
import streamlit as st
import pandas as pd
from orion import Orion
from utils import plot
from tensorflow.keras.utils import plot_model
data = pd.read_csv('data/543341.csv', usecols=['Date', 'No. of Trades'], parse_dates=['Date'])
data.rename(columns={'No. of Trades': 'value', 'Date': 'timestamp'}, inplace=True)
data.sort_values(by='timestamp', inplace=True)
data.timestamp = (data.timestamp - pd.Timestamp("1970-01-01")) // pd.Timedelta("1s")
data.head()
known_anomalies = pd.DataFrame({
'start': [1648751400],
'end': [1661970599]
})
known_anomalies
hyperparameters = {
"mlprimitives.custom.timeseries_preprocessing.rolling_window_sequences#1": {
'target_column': 0,
'window_size': 100
},
'keras.Sequential.LSTMSeq2Seq#1': {
'epochs': 15,
'verbose': True,
'window_size': 100,
'input_shape': [100, 1],
'target_shape': [100, 1]
}
}
orion = Orion(
pipeline='lstm_autoencoder',
hyperparameters=hyperparameters
)
anomalies = orion.fit_detect(data)
anomalies
plotImg = plot(data, 'Sharpline Broadcast Ltd. (543341)', anomalies=[anomalies, known_anomalies])
st.title("Anomalies Detection")
st.dataframe(anomalies)
st.pyplot(plotImg, True)Editor is loading...