hugg1.py
quoc14
python
a year ago
3.2 kB
4
Indexable
FaceRC
import sys
from transformers import AutoModel
from huggingface_hub import hf_hub_download
import shutil
import os
import sys
import gc
import torch
list_all_models = ["minchul/cvlface_DFA_mobilenet",
"minchul/cvlface_DFA_resnet50",
"minchul/cvlface_adaface_vit_base_webface4m",
"minchul/cvlface_DFA_resnet50",
"minchul/cvlface_adaface_ir18_vgg2",
"minchul/cvlface_adaface_ir18_webface4m",
"minchul/cvlface_adaface_ir50_webface4m",
"minchul/cvlface_adaface_ir50_casia",
"minchul/cvlface_adaface_ir50_ms1mv2",
"minchul/cvlface_adaface_ir101_ms1mv2",
"minchul/cvlface_adaface_ir101_ms1mv3",
"minchul/cvlface_adaface_ir101_webface4m",
"minchul/cvlface_adaface_vit_base_kprpe_webface12m",
"minchul/cvlface_adaface_ir101_webface12m",
"minchul/cvlface_adaface_vit_base_webface4m",
"minchul/cvlface_adaface_vit_base_kprpe_webface4m"
]
# helpfer function to download huggingface repo and use model
def download(repo_id, path, HF_TOKEN=None):
os.makedirs(path, exist_ok=True)
files_path = os.path.join(path, 'files.txt')
if not os.path.exists(files_path):
hf_hub_download(repo_id, 'files.txt', token=HF_TOKEN, local_dir=path, local_dir_use_symlinks=False)
with open(os.path.join(path, 'files.txt'), 'r') as f:
files = f.read().split('\n')
for file in [f for f in files if f] + ['config.json', 'wrapper.py', 'model.safetensors']:
full_path = os.path.join(path, file)
if not os.path.exists(full_path):
hf_hub_download(repo_id, file, token=HF_TOKEN, local_dir=path, local_dir_use_symlinks=False)
def download_all_models():
for model in list_all_models:
print("-----------------Downloading model: ", model, "-----------------")
download(model, os.path.abspath(f"model/{model}"))
def load_model_from_local_path(path, HF_TOKEN=None):
path = os.path.abspath(path)
cwd = os.getcwd()
try:
os.chdir(path)
sys.path.insert(0, path)
# Tải mô hình từ đường dẫn chỉ định
model = AutoModel.from_pretrained(path, trust_remote_code=True)
print(f"Tải thành công mô hình từ: {path}")
return model
except Exception as e:
print(f"Lỗi khi tải mô hình từ {path}: {str(e)}")
raise e
finally:
# Quay lại thư mục ban đầu và dọn dẹp đường dẫn
os.chdir(cwd)
if path in sys.path:
sys.path.pop(0)
torch.cuda.empty_cache() # Giải phóng bộ nhớ GPU nếu cần
gc.collect()
# helpfer function to download huggingface repo and use model
def load_model_by_repo_id(repo_id, save_path, HF_TOKEN=None, force_download=False):
if force_download:
if os.path.exists(save_path):
shutil.rmtree(save_path)
download(repo_id, save_path, HF_TOKEN)
return load_model_from_local_path(save_path, HF_TOKEN)
Editor is loading...
Leave a Comment