Bert QA - Huggingface
unknown
python
4 years ago
904 B
10
Indexable
from transformers import BertTokenizer, BertForQuestionAnswering
import torch
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
inputs = tokenizer(question, text, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
answer_start_index = outputs.start_logits.argmax()
answer_end_index = outputs.end_logits.argmax()
predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
tokenizer.decode(predict_answer_tokens)
%%%%%%%%%%%%%%%%
# target is "nice puppet"
target_start_index, target_end_index = torch.tensor([14]), torch.tensor([15])
outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
loss = outputs.loss
round(loss.item(), 2)Editor is loading...