Untitled
unknown
python
3 years ago
1.1 kB
4
Indexable
#Prints out all available layers for i in range(len(model.layers)): layer = model.layers[i] if 'conv' not in layer.name: continue print(i , layer.name , layer.output.shape) from tensorflow.keras.applications.vgg16 import preprocess_input from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import Model from matplotlib import pyplot from numpy import expand_dims from matplotlib import pyplot model1 = Model(inputs=model.inputs , outputs=model.layers[7].output) image = load_img("../input/small-weapon-data/small weapon train/test/pistols/pistol-00322.jpg" , target_size=(256,256)) # convert the image to an array image = img_to_array(image) # expand dimensions so that it represents a single 'sample' image = expand_dims(image, axis=0) #calculating features_map features = model1.predict(image) fig = pyplot.figure(figsize=(20,15)) for i in range(1,features.shape[3]+1): pyplot.subplot(6,6,i) pyplot.imshow(features[0,:,:,i-1] , cmap='gray') pyplot.show()
Editor is loading...