Untitled
unknown
plain_text
2 years ago
1.8 kB
8
Indexable
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Load and preprocess the dataset
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'/Analytics/venv/Jup/CAPE_Case_Management_PDF_Invoicing/Data/images/',
target_size=(224, 224),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
'/Analytics/venv/Jup/CAPE_Case_Management_PDF_Invoicing/Data/images/',
target_size=(224, 224),
batch_size=32,
class_mode='binary')
# Define the model
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(512, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')
])
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model
model.fit_generator(
train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
epochs=10,
validation_data=validation_generator,
validation_steps=validation_generator.samples // validation_generator.batch_size)
Editor is loading...
Leave a Comment