Untitled
unknown
plain_text
2 years ago
1.8 kB
4
Indexable
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from tensorflow.keras.preprocessing.image import ImageDataGenerator # Load and preprocess the dataset train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( '/Analytics/venv/Jup/CAPE_Case_Management_PDF_Invoicing/Data/images/', target_size=(224, 224), batch_size=32, class_mode='binary') validation_generator = test_datagen.flow_from_directory( '/Analytics/venv/Jup/CAPE_Case_Management_PDF_Invoicing/Data/images/', target_size=(224, 224), batch_size=32, class_mode='binary') # Define the model model = Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dense(512, activation='relu'), Dropout(0.5), Dense(1, activation='sigmoid') ]) # Compile the model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # Train the model model.fit_generator( train_generator, steps_per_epoch=train_generator.samples // train_generator.batch_size, epochs=10, validation_data=validation_generator, validation_steps=validation_generator.samples // validation_generator.batch_size)
Editor is loading...
Leave a Comment