Untitled

 avatar
unknown
plain_text
2 years ago
1.8 kB
4
Indexable
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Load and preprocess the dataset
train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    fill_mode='nearest')

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
    '/Analytics/venv/Jup/CAPE_Case_Management_PDF_Invoicing/Data/images/',
    target_size=(224, 224),
    batch_size=32,
    class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
    '/Analytics/venv/Jup/CAPE_Case_Management_PDF_Invoicing/Data/images/',
    target_size=(224, 224),
    batch_size=32,
    class_mode='binary')

# Define the model
model = Sequential([
    Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
    MaxPooling2D((2, 2)),
    Conv2D(64, (3, 3), activation='relu'),
    MaxPooling2D((2, 2)),
    Conv2D(128, (3, 3), activation='relu'),
    MaxPooling2D((2, 2)),
    Conv2D(128, (3, 3), activation='relu'),
    MaxPooling2D((2, 2)),
    Flatten(),
    Dense(512, activation='relu'),
    Dropout(0.5),
    Dense(1, activation='sigmoid')
])

# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Train the model
model.fit_generator(
    train_generator,
    steps_per_epoch=train_generator.samples // train_generator.batch_size,
    epochs=10,
    validation_data=validation_generator,
    validation_steps=validation_generator.samples // validation_generator.batch_size)

Editor is loading...
Leave a Comment