Untitled
unknown
plain_text
a year ago
1.8 kB
4
Indexable
# Step 1: Import Libraries and Loading Data
import pandas as pd
df = pd.read_csv('music.csv')
# Step 2: Shuffle the data
df = shuffle(df)
# Step 3: Drop unnecessary columns
df = df.drop(['Path'], axis=1)
# Step 4: Split the data into features and labels
test = df.iloc[:500, :] # First 500 rows for testing
train = df.iloc[500:, :] # Remaining rows for training
# Step 4 : Separate Labels and Features
train_labels = train['Class'].tolist()
test_labels = test['Class'].tolist()
train = train.drop(['Class'], axis=1)
test = test.drop(['Class'], axis=1)
# Step 6 : Importing Classifer
from sklearn.metrics import accuracy_score, log_loss
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
train_samples, test_samples, train_labels, test_labels = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 7: Setting Up Classifiers
classifiers = [
KNeighborsClassifier(3),
SVC(kernel="rbf", C=0.025, probability=True),
DecisionTreeClassifier(),
RandomForestClassifier(),
AdaBoostClassifier(),
GradientBoostingClassifier(),
GaussianNB(),
LinearDiscriminantAnalysis(),
QuadraticDiscriminantAnalysis()
]
# Step 8: Train and evaluate each classifier
for clf in classifiers:
clf.fit(train_samples, train_labels)
res=clf.predict(test_samples)
acc = accuracy_score(test_labels, res)
print (clf.__class__.__name__+" Accuracy: "+str(acc))
Editor is loading...
Leave a Comment