Untitled
unknown
plain_text
6 months ago
1.5 kB
3
Indexable
Never
import math # Function to calculate the inner product of two vectors def inner_product(vector1, vector2): if len(vector1) != len(vector2): raise ValueError("Vectors must be of the same length") return sum(x * y for x, y in zip(vector1, vector2)) # Function to calculate the L2 norm of a vector def l2_norm(vector): return math.sqrt(sum(x**2 for x in vector)) # Function to calculate the L∞ norm of a vector def linf_norm(vector): return max(abs(x) for x in vector) # Function to calculate the Euclidean distance between two points represented by vectors def euclidean_distance(vector1, vector2): if len(vector1) != len(vector2): raise ValueError("Vectors must be of the same length") squared_difference = sum((x - y) ** 2 for x, y in zip(vector1, vector2)) return math.sqrt(squared_difference) # Given dimensions n = 500 # Generate vectors a and b a = [i for i in range(1, n + 1)] b = [i**2 for i in range(1, n + 1)] # Calculate inner product inner_prod = inner_product(a, b) print("Inner Product:", inner_prod) # Calculate L2 norm l2_norm_a = l2_norm(a) l2_norm_b = l2_norm(b) print("L2 Norm of a:", l2_norm_a) print("L2 Norm of b:", l2_norm_b) # Calculate L∞ norm linf_norm_a = linf_norm(a) linf_norm_b = linf_norm(b) print("L∞ Norm of a:", linf_norm_a) print("L∞ Norm of b:", linf_norm_b) # Calculate Euclidean distance distance = euclidean_distance(a, b) print("Euclidean Distance:", distance)
Leave a Comment