Untitled
unknown
plain_text
14 days ago
1.7 kB
1
Indexable
Never
import numpy as np def monocular_depth_to_metric(depth_map, focal_length, baseline, image_width): """ Convert a monocular depth map to metric depth. Args: depth_map (numpy.ndarray): Depth map from a monocular depth estimation model focal_length (float): Focal length of the camera in pixels baseline (float): An arbitrary baseline for scale (in meters) image_width (int): Width of the image in pixels Returns: numpy.ndarray: Estimated metric depth map """ # Normalize depth map to 0-1 range if not already depth_norm = (depth_map - np.min(depth_map)) / (np.max(depth_map) - np.min(depth_map)) # Convert normalized depth to a pseudo-disparity pseudo_disparity = 1 / (depth_norm + 1e-6) # Adding epsilon to avoid division by zero # Scale factor to convert pseudo-disparity to pixel disparity # This is an approximation and may need adjustment scale = image_width / (2 * focal_length) # Estimate pixel disparity pixel_disparity = pseudo_disparity * scale # Convert to metric depth metric_depth = (focal_length * baseline) / pixel_disparity return metric_depth # Example usage depth_map = np.random.rand(480, 640) # Example depth map from a monocular model focal_length = 500 # Example focal length in pixels baseline = 0.1 # Arbitrary baseline for scale (in meters) image_width = 640 metric_depth = monocular_depth_to_metric(depth_map, focal_length, baseline, image_width) print("Shape of metric depth map:", metric_depth.shape) print("Min depth:", np.min(metric_depth), "meters") print("Max depth:", np.max(metric_depth), "meters")
Leave a Comment