Untitled
unknown
plain_text
a year ago
1.7 kB
7
Indexable
import numpy as np
def monocular_depth_to_metric(depth_map, focal_length, baseline, image_width):
"""
Convert a monocular depth map to metric depth.
Args:
depth_map (numpy.ndarray): Depth map from a monocular depth estimation model
focal_length (float): Focal length of the camera in pixels
baseline (float): An arbitrary baseline for scale (in meters)
image_width (int): Width of the image in pixels
Returns:
numpy.ndarray: Estimated metric depth map
"""
# Normalize depth map to 0-1 range if not already
depth_norm = (depth_map - np.min(depth_map)) / (np.max(depth_map) - np.min(depth_map))
# Convert normalized depth to a pseudo-disparity
pseudo_disparity = 1 / (depth_norm + 1e-6) # Adding epsilon to avoid division by zero
# Scale factor to convert pseudo-disparity to pixel disparity
# This is an approximation and may need adjustment
scale = image_width / (2 * focal_length)
# Estimate pixel disparity
pixel_disparity = pseudo_disparity * scale
# Convert to metric depth
metric_depth = (focal_length * baseline) / pixel_disparity
return metric_depth
# Example usage
depth_map = np.random.rand(480, 640) # Example depth map from a monocular model
focal_length = 500 # Example focal length in pixels
baseline = 0.1 # Arbitrary baseline for scale (in meters)
image_width = 640
metric_depth = monocular_depth_to_metric(depth_map, focal_length, baseline, image_width)
print("Shape of metric depth map:", metric_depth.shape)
print("Min depth:", np.min(metric_depth), "meters")
print("Max depth:", np.max(metric_depth), "meters")Editor is loading...
Leave a Comment