Untitled
unknown
plain_text
a year ago
880 B
2
Indexable
Never
def conv_model(): x = Input(shape=(32, 32, 3)) c1 = Conv2D(64, (3, 3), activation='relu', padding='same')(x) c2 = Conv2D(64, (3, 3), activation='relu', padding='same')(c1) p1 = MaxPool2D((2, 2))(c2) d1 = Dropout(0.25)(p1) c3 = Conv2D(128, (3, 3), activation='relu', padding='same')(d1) c4 = Conv2D(128, (3, 3), activation='relu', padding='same')(c3) p2 = MaxPool2D((2, 2))(c4) d2 = Dropout(0.5)(p2) xf = Flatten()(d2) l1 = Dense(512, activation='relu')(xf) d3 = Dropout(0.5)(l1) y = Dense(25, activation='softmax')(d3) return Model(inputs=x, outputs=y) model = conv_model() model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) cb = [ModelCheckpoint('/content/drive/My Drive/Colab Notebooks/ZMUM_2023_24/model_zad.h5', monitor='val_accuracy', save_best_only=True)] model.summary()