Untitled
unknown
plain_text
a year ago
1.0 kB
6
Indexable
import numpy as np import matplotlib.pyplot as plt # Define the function and its derivative def f(x): return np.sqrt(x) def f_prime(x): return 1 / (2 * np.sqrt(x)) # Define the interval and points x = np.linspace(0, 4, 400) y = f(x) # Secant line secant_x = np.array([0, 4]) secant_y = np.array([f(0), f(4)]) # Tangent line at c = 1 c = 1 tangent_slope = f_prime(c) tangent_y = tangent_slope * (x - c) + f(c) # Plot the function, secant line, and tangent line plt.figure(figsize=(10, 6)) plt.plot(x, y, label='$f(x) = \sqrt{x}$', color='blue') plt.plot(secant_x, secant_y, label='Secant line', color='green', linestyle='--') plt.plot(x, tangent_y, label='Tangent line at $c = 1$', color='red', linestyle='--') plt.scatter([0, 4, c], [f(0), f(4), f(c)], color='black') # Mark the points plt.text(c, f(c), ' ($c$, $f(c)$)', verticalalignment='bottom', horizontalalignment='right') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.legend() plt.title('Graph of $f(x) = \sqrt{x}$ with Secant and Tangent Lines') plt.grid(True) plt.show()
Editor is loading...
Leave a Comment