Untitled
unknown
matlab
3 years ago
2.8 kB
4
Indexable
%% comp3 2.3 Kalman filter for prediction addpath '/Users/noahakesson/MATLAB-Drive/Comp2/Tidserie/functions' addpath '/Users/noahakesson/MATLAB-Drive/Comp2/Tidserie/data' close all clear all %% rng (0); N = 10000; ee = 0.1*randn(N, 1 ) ; A0 = [1 -0.8 0.2 ]; y = filter(1 , A0 , ee ); Re = [ 1e-6 0 ; 0 1e-6]; Rw = 0.1 ; % Set some initialvalues A = eye(2); Rxx_1 = 10*eye ( 2 ) ; % Initialstate variance xtt_1 = [ 0 0 ]'; % Initialstatevalues %xtt_1 --> x_{t|t-1} %xt = zeros(2,N); % x_{t|t} initial state % Vectors to store values in Xsave = zeros( 2 ,N) ; % Stored states ehat = zeros( 1 ,N) ; % Prediction residual yt1 = zeros( 1 ,N) ; % One s t e p p r e d i c t i o n yt2 = zeros( 1 ,N) ; % Two s t e p p r e d i c t i o n % The f i l t e r use data up to t ime t-1 to predictvalue at t, % then update using the prediction error. Why do we start % from t=3? Why stop at N-2? for t=3:N-2 xtt_1 = A*Xsave(:,t-1); % x_{t|t-1} = A x_{t-1|t-1} Ct = [ -y(t-1) -y(t-2) ] ; %C_{t|t-1} yhat(t) = Ct*xtt_1; %y_{t|t-1} = Ct*x_{t|t-1} ehat(t) = y(t)-yhat(t); % e_t = y_t - y_{t|t-1} % Update Ryy = Ct*Rxx_1*Ct' + Rw; % R^{yy}_{t|t-1} = Ct*R_{t|t-1}^{x,x} + Rw Kt = Rxx_1*Ct'/Ryy; % K_t = R^{x,x}_{t|t-1} C^T inv( R_{t|t-1}^{y,y} ) xt_t = xtt_1 + Kt*(ehat(t)); % x_{t|t} = x_{t|t-1} + K_t ( y_t - Cx_{t|t-1} ) Rxx = Rxx_1 - Kt*Ryy*Kt'; % R{xx}_{t|t} = R^{x,x}_{t|t-1} - K_t R_{t|t-1}^{y,y} K_t^T % Predict the nextstate %xt_t1 = A*xt_t; % x_{t+1|t} HÄR KAN VARA EN B*U_t term om man har input??? Rxx_1 = A*Rxx*A' + Re; % R^{x,x}_{t+1|t} = A R^{x,x}_{t|t} A^T + Re % Form 2 stepprediction . Ignore this part at first . Ct1 = [ -y(t) -y(t-1) ] ; yt1(t+1) = Ct1*xt_t; Ct2 = [ -yt1(t+1) -y(t) ]; yt2 (t+2) = Ct2*A*xt_t; % % Store the statevector Xsave(:, t) = xt_t; yhatk(t+2) = yt2(t+2); end %% Examine the estimated parameters. k=2; figure Q0 = [A0(2) A0(3)]; % These are the true parameters we seek. plot( Xsave' ) for k0=1:length(Q0) line([1 N], [Q0(k0) Q0(k0)], 'Color','red','LineStyle',':') end title(sprintf('Estimated parameters, with Re = %7.6f and Rw = %4.3f', Re, Rw)) xlabel('Time') ylim([-1.5 1.5]) xlim([1 N-k]) %% Plot figure plot(Xsave(1,:)) hold on plot(Xsave(2,:)) legend('a1', 'a2', 'Location','SW') figure plot(ehat) title('residual') sumsqr(ehat) %% Show the k-step prediction. k=2; figure plot( [y(1:N-k) yhatk(k+1:N)] ) title( sprintf('%i-step prediction using the Kalman filter (shifted %i steps)', k, k) ) xlabel('Time') legend('Realisation', 'Kalman estimate', 'Location','SW') xlim([1 N-k])
Editor is loading...