Untitled
user_8080122
plain_text
2 years ago
1.3 kB
5
Indexable
from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, confusion_matrix df3 = pd.read_csv("car_data.csv", index_col = "User ID") df3.head() df3["Gender_dummy"] = df3["Gender"].replace({"Male":0, "Female":1}) df4 = df3.drop("Gender", axis = 1) X = df4.iloc[:, [0,1,3]] y = df4.iloc[:, 2] from sklearn.preprocessing import StandardScaler sc = StandardScaler() X = sc.fit_transform(X) X X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state = 45) logistic_reg = LogisticRegression() logistic_reg.fit(X_train, y_train) y_predict = logistic_reg.predict(X_test) results= pd.DataFrame({"Actual": y_test, "Predicted": y_predict}) results logistic_reg.intercept_ logistic_reg.coef_ from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score cnf_matrix = confusion_matrix(y_test, y_predict) cnf_matrix sns.heatmap(pd.DataFrame(cnf_matrix), cmap = "coolwarm", annot = True) plt.title("Confusion matrix", y = 1.1) plt.ylabel("Actual label") plt.xlabel("Predicted label") accuracy = accuracy_score(y_test, y_pred) accuracy precision = precision_score(y_test, y_pred) precision recall = recall_score(y_test, y_pred) recall f1 = f1_score(y_test, y_pred) f1
Editor is loading...