Untitled
unknown
python
9 months ago
870 B
14
Indexable
def gradient_descent_with_regularization(X, y, learning_rate=0.01, iterations=1000, l1=0.0, l2=0.0): num_samples, num_features = X.shape theta = np.zeros((num_features, 1)) # Initialize theta to zeros cost_history = [] for i in range(iterations): # Compute predictions predictions = X.dot(theta) # Compute the error error = predictions - y # Compute the gradient with L1 and L2 regularization gradients = (1 / num_samples) * X.T.dot(error) + l1 * np.sign(theta) + l2 * theta # Update the parameters theta -= learning_rate * gradients # Optionally, compute the cost for monitoring progress cost = (1 / (2 * num_samples)) * np.sum(error ** 2) + l1 * np.sum(np.abs(theta)) + (l2 / 2) * np.sum(theta ** 2) cost_history.append(cost) return theta, cost_history
Editor is loading...
Leave a Comment