Untitled
unknown
plain_text
2 years ago
2.0 kB
16
Indexable
import cv2
import numpy as np
def detect_potholes(frame):
# Convert the frame to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Apply Gaussian blur to reduce noise and improve edge detection
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# Edge detection
edges = cv2.Canny(blur, 50, 150)
# Find contours in the edged image
contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# Filter the contours
pothole_contours = []
for cnt in contours:
# Calculate contour area and remove small areas
area = cv2.contourArea(cnt)
if area > 500: # this threshold is an example, adjust it for your needs
# Approximate the contour to a circle
perimeter = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.02 * perimeter, True)
# Contours with more than 5 vertices (more circular in shape) could be potential potholes
if len(approx) > 5:
pothole_contours.append(cnt)
return pothole_contours
# Load your video
cap = cv2.VideoCapture('path_to_video.mp4')
# Check if video opened successfully
if not cap.isOpened():
print("Error opening video stream or file")
# Read until video is completed
while cap.isOpened():
ret, frame = cap.read()
if ret:
# Perform pothole detection on the frame
potholes = detect_potholes(frame)
# Draw bounding rectangles around detected potholes
for cnt in potholes:
x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Display the resulting frame with detected potholes
cv2.imshow('Frame', frame)
# Press Q on keyboard to exit
if cv2.waitKey(25) & 0xFF == ord('q'):
break
else:
break
# When everything done, release the video capture object
cap.release()
cv2.destroyAllWindows()
Editor is loading...
Leave a Comment