Untitled

 avatar
unknown
plain_text
a year ago
2.0 kB
9
Indexable
import cv2
import numpy as np

def detect_potholes(frame):
    # Convert the frame to grayscale
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    # Apply Gaussian blur to reduce noise and improve edge detection
    blur = cv2.GaussianBlur(gray, (5, 5), 0)

    # Edge detection
    edges = cv2.Canny(blur, 50, 150)

    # Find contours in the edged image
    contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

    # Filter the contours
    pothole_contours = []
    for cnt in contours:
        # Calculate contour area and remove small areas
        area = cv2.contourArea(cnt)
        if area > 500:  # this threshold is an example, adjust it for your needs
            # Approximate the contour to a circle
            perimeter = cv2.arcLength(cnt, True)
            approx = cv2.approxPolyDP(cnt, 0.02 * perimeter, True)

            # Contours with more than 5 vertices (more circular in shape) could be potential potholes
            if len(approx) > 5:
                pothole_contours.append(cnt)
    
    return pothole_contours

# Load your video
cap = cv2.VideoCapture('path_to_video.mp4')

# Check if video opened successfully
if not cap.isOpened():
    print("Error opening video stream or file")

# Read until video is completed
while cap.isOpened():
    ret, frame = cap.read()
    if ret:
        # Perform pothole detection on the frame
        potholes = detect_potholes(frame)

        # Draw bounding rectangles around detected potholes
        for cnt in potholes:
            x, y, w, h = cv2.boundingRect(cnt)
            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)

        # Display the resulting frame with detected potholes
        cv2.imshow('Frame', frame)

        # Press Q on keyboard to exit
        if cv2.waitKey(25) & 0xFF == ord('q'):
            break
    else:
        break

# When everything done, release the video capture object
cap.release()
cv2.destroyAllWindows()
Editor is loading...
Leave a Comment