Untitled
unknown
plain_text
a year ago
2.6 kB
6
Indexable
To differentiate the expression \( \frac{5 + 3\cos(\theta)}{6\sin(\theta)} \) with respect to \(\theta\), we will use the quotient rule. The quotient rule for differentiation states that if we have a function \( f(\theta) = \frac{u(\theta)}{v(\theta)} \), then its derivative is given by: \[ f'(\theta) = \frac{u'(\theta)v(\theta) - u(\theta)v'(\theta)}{[v(\theta)]^2} \] ### Step-by-Step Differentiation 1. **Identify \( u(\theta) \) and \( v(\theta) \):** - \( u(\theta) = 5 + 3\cos(\theta) \) - \( v(\theta) = 6\sin(\theta) \) 2. **Differentiate \( u(\theta) \) and \( v(\theta) \):** - \( u'(\theta) = \frac{d}{d\theta} [5 + 3\cos(\theta)] \) \[ u'(\theta) = 0 + 3(-\sin(\theta)) = -3\sin(\theta) \] - \( v'(\theta) = \frac{d}{d\theta} [6\sin(\theta)] \) \[ v'(\theta) = 6\cos(\theta) \] 3. **Apply the quotient rule:** \[ f'(\theta) = \frac{u'(\theta)v(\theta) - u(\theta)v'(\theta)}{[v(\theta)]^2} \] Substitute \( u(\theta) \), \( v(\theta) \), \( u'(\theta) \), and \( v'(\theta) \): \[ f'(\theta) = \frac{(-3\sin(\theta))(6\sin(\theta)) - (5 + 3\cos(\theta))(6\cos(\theta))}{[6\sin(\theta)]^2} \] 4. **Simplify the numerator:** \[ \text{Numerator} = (-3\sin(\theta))(6\sin(\theta)) - (5 + 3\cos(\theta))(6\cos(\theta)) \] \[ = -18\sin^2(\theta) - (30\cos(\theta) + 18\cos^2(\theta)) \] \[ = -18\sin^2(\theta) - 30\cos(\theta) - 18\cos^2(\theta) \] 5. **Simplify the denominator:** \[ \text{Denominator} = [6\sin(\theta)]^2 = 36\sin^2(\theta) \] 6. **Combine the numerator and denominator:** \[ f'(\theta) = \frac{-18\sin^2(\theta) - 30\cos(\theta) - 18\cos^2(\theta)}{36\sin^2(\theta)} \] 7. **Factor and simplify if possible:** \[ f'(\theta) = \frac{-18(\sin^2(\theta) + \cos^2(\theta)) - 30\cos(\theta)}{36\sin^2(\theta)} \] Using the Pythagorean identity \(\sin^2(\theta) + \cos^2(\theta) = 1\): \[ f'(\theta) = \frac{-18(1) - 30\cos(\theta)}{36\sin^2(\theta)} \] \[ = \frac{-18 - 30\cos(\theta)}{36\sin^2(\theta)} \] Simplify the fraction: \[ = \frac{-18 - 30\cos(\theta)}{36\sin^2(\theta)} = \frac{-18(1 + \frac{5\cos(\theta)}{3})}{36\sin^2(\theta)} \] \[ = \frac{-18(3 + 5\cos(\theta))}{108\sin^2(\theta)} = \frac{-3(3 + 5\cos(\theta))}{18\sin^2(\theta)} \] \[ = \frac{- (3 + 5\cos(\theta))}{6\sin^2(\theta)} \] So, the derivative of \( \frac{5 + 3\cos(\theta)}{6\sin(\theta)} \) with respect to \(\theta\) is: \[ f'(\theta) = \frac{-(3 + 5\cos(\theta))}{6\sin^2(\theta)} \]
Editor is loading...
Leave a Comment