Untitled
import tensorflow as tf from tensorflow.keras.applications import ResNet50 from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import ReduceLROnPlateau # Load pre-trained ResNet50 model base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3)) # Freeze all layers except the last 5 for layer in base_model.layers[:-5]: layer.trainable = False # Add custom layers x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) predictions = Dense(len(lb.classes_), activation='softmax')(x) # Create the model model = Model(inputs=base_model.input, outputs=predictions) # Compile the model model.compile(optimizer=Adam(learning_rate=1e-4), loss='categorical_crossentropy', metrics=['accuracy']) # Train the model history = model.fit( train_generator, epochs=8, validation_data=val_generator, callbacks=[ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=2, min_lr=1e-6)] ) for layer in model.layers: layer.trainable = True model.compile(optimizer=Adam(learning_rate=1e-4), loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit( train_generator, epochs=3, validation_data=val_generator, callbacks=[ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=2, min_lr=1e-6)] ) # Evaluate the model loss, accuracy = model.evaluate(val_generator) print(f'Test loss: {loss:.3f}') print(f'Test accuracy: {accuracy:.3f}') # Save the model model.save('resnet50_fine_tuned.h5')
Leave a Comment