STFT: Conversion and Augmentation

mail@pastecode.io avatar
unknown
python
6 months ago
2.3 kB
6
Indexable
Never
import os
import librosa
import librosa.display
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import stft


# Path to audio
audio_folder = "/Users/harshit/Desktop/SOP/data/normal"

output_folder = "/Users/harshit/Desktop/SOP/data/Augmented/normalSTFT"

# RMS val list 
rms_values = [0, 0.01,0.015, 0.02, 0.03,0.04]

num_iterations = 1

if not os.path.exists(output_folder):
    os.makedirs(output_folder)

for rms in rms_values:
    for filename in os.listdir(audio_folder):
        if filename.endswith(".wav") or filename.endswith(".mp3") or filename.endswith(".ogg"):
            filepath = os.path.join(audio_folder, filename)
            y, sr = librosa.load(filepath, sr=None)

            # Ignore the first 2000 bits
            y = y[2000:]

            num_samples = len(y)
            part_size = num_samples // 3
            
            y_parts = [y[i:i+part_size] for i in range(0, num_samples, part_size)]

            for i, y_part in enumerate(y_parts[:3]):
                for _ in range(num_iterations):
                    noise_duration = librosa.get_duration(y=y_part, sr=sr)
                    noise = np.random.normal(0, rms, len(y_part))
                    y_with_noise = y_part + noise

                    # Compute the Short-Time Fourier Transform (STFT)
                    _, _, stft_mat = stft(y_with_noise, fs=sr, nperseg=400, noverlap=200, nfft=512, window='hamming')

                    # Convert magnitude STFT to dB scale for visualization
                    stft_mat_db = 10 * np.log10(np.abs(stft_mat))

                    # Normalize to [0, 1] range
                    stft_mat_db -= stft_mat_db.min()
                    stft_mat_db /= stft_mat_db.max()

                    # Save the STFT as a PNG without axes and colorbar
                    output_filename = os.path.join(
                        output_folder, f"rms_{rms:.3f}_{os.path.splitext(filename)[0]}_part{i+1}.png")
                    plt.figure(figsize=(10, 5))
                    librosa.display.specshow(stft_mat_db, y_axis=None, x_axis=None, sr=sr)
                    plt.axis('off')  # Remove axes
                    plt.tight_layout()
                    plt.savefig(output_filename)
                    plt.close()
Leave a Comment