done ver1
unknown
python
4 years ago
2.9 kB
9
Indexable
from pickletools import uint8
import numpy as np
import cv2
import math
def show(image):
cv2.imshow('image',image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def get_gs(window_size, sigma_s, pad_w):
'''return gs, size: (window_size, window_size)'''
gs = np.zeros((window_size, window_size, 3))
for i in range(window_size):
for j in range(i, window_size):
result = np.exp((-1) * ((i-pad_w)**2 + (j-pad_w)**2) * 0.5 / (sigma_s**2))
gs[i, j, :] = result
gs[j, i, :] = result
return gs
# def get_gr_value(p, q, gr_dict):
# p_red, p_green, p_blue = p[0], p[1], p[2]
# q_red, q_green, q_blue = q[0], q[1], q[2]
# gr = gr_dict[abs(p_red - q_red)] * gr_dict[abs(p_green - q_green)] * gr_dict[abs(p_blue-q_blue)]
# return gr
class Joint_bilateral_filter(object):
def __init__(self, sigma_s, sigma_r):
self.sigma_r = sigma_r
self.sigma_s = sigma_s
self.wndw_size = 6*sigma_s+1 # ws
self.pad_w = 3*sigma_s # r
def joint_bilateral_filter(self, img, guidance):
BORDER_TYPE = cv2.BORDER_REFLECT
padded_img = cv2.copyMakeBorder(img, self.pad_w, self.pad_w, self.pad_w, self.pad_w, BORDER_TYPE).astype(np.int32)
padded_guidance = cv2.copyMakeBorder(guidance, self.pad_w, self.pad_w, self.pad_w, self.pad_w, BORDER_TYPE).astype(np.int32)
window_size = self.wndw_size
pad_w = self.pad_w
print("window size: ", window_size)
print("padded image size: ", padded_img.shape)
print("padded guidance size: ", padded_guidance.shape)
print("=============")
### TODO ###
# save Gs kernel dict
gs = get_gs(window_size, self.sigma_s, self.pad_w)
gr_dict = [np.exp(-(x * 0.5 / ((self.sigma_r**2)* (255**2)))) for x in range(256)]
output = np.zeros(img.shape)
shift = 0
i, j = 0, 0
shift_x, shift_y = 0, 0
# for a window
for i in range(img.shape[0]):
for j in range(img.shape[1]):
intensity = padded_img[i:i+window_size, j:j+window_size]
Tq = padded_guidance[i:i+window_size, j:j+window_size]/255
Tp = padded_guidance[i+pad_w, j+pad_w]/255
if (len(Tq.shape) == 3):
# print(Tq-Tp)
# print((Tq-Tp).shape)
gr = np.exp(-np.sum(np.square(Tq-Tp), axis=2) * 0.5 / (self.sigma_r**2))
else:
gr = np.exp(-np.square(Tq-Tp) * 0.5 / (self.sigma_r**2))
gr = np.stack((gr, gr, gr), axis=-1)
output[i, j] = np.sum(np.sum(gs*gr*intensity, axis=0), axis=0) / np.sum(np.sum((gs * gr), axis=0), axis=0)
return np.clip(output, 0, 255).astype(np.uint8)Editor is loading...