Untitled
user_5706693
plain_text
a year ago
3.4 kB
11
Indexable
class CAE(nn.Module): def __init__(self, list_of_sizes, dropout_rate=0.5): super(CAE, self).__init__() self.list_sizes = list_of_sizes self.dropout_rate = dropout_rate self.encoder = self.encoder_layer() self.decoder = self.decoder_layer() self.initialize_weights() def encoder_layer(self): layers = [] for i in range(1, len(self.list_sizes)): layers.append(nn.Conv1d(self.list_sizes[i-1], self.list_sizes[i], kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU()) layers.append(nn.Dropout(self.dropout_rate)) return nn.Sequential(*layers) def decoder_layer(self): layers = [] for i in range(len(self.list_sizes) - 1, 0, -1): layers.append(nn.ConvTranspose1d(self.list_sizes[i], self.list_sizes[i-1], kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU()) layers.append(nn.Dropout(self.dropout_rate)) return nn.Sequential(*layers) def initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x class basic_block(nn.Module): def __init__(self, in_channels, in_cnns, in_lstms, dropout_rate=0.5): super(basic_block, self).__init__() self.conv = nn.Conv1d(in_channels, in_cnns, kernel_size=3, stride=1, padding=1) self.bn = nn.BatchNorm1d(in_cnns) self.lstm1 = nn.LSTM(in_cnns, in_lstms, batch_first=True, bidirectional=True) # self.lstm2 = nn.LSTM(in_lstms, in_lstms, batch_first=True, bidirectional=True) self.pool = nn.MaxPool1d(kernel_size=2, stride=2) self.relu = nn.ReLU() self.dropout = nn.Dropout(dropout_rate) def forward(self, x): x = self.conv(x) x = self.dropout(x) x = x.permute(1, 0) x = self.relu(self.bn(x)) x, _ = self.lstm1(x) x = self.relu(x) x = self.pool(x) x = x.permute(1, 0) return x class CAEL(nn.Module): def __init__(self, block, in_channel, in_caes, in_cnns, in_lstms): super(CAEL, self).__init__() self.autoencoder = CAE(list_of_sizes=[in_channel, *in_caes], dropout_rate=0.1) self.layer1 = self.layer(block, in_caes[-1], in_cnns[0], in_lstms[0], dropout_rate=0.3) self.layer2 = self.layer(block, in_lstms[0], in_cnns[1], in_lstms[1], dropout_rate=0.3) self.layer3 = self.layer(block, in_lstms[1], in_cnns[2], in_lstms[2], dropout_rate=0.3) self.fc = nn.Linear(in_lstms[-1], in_channel) def layer(self, block, in_channel, in_cnn, in_lstm, dropout_rate): layers = [] layers.append(block(in_channel, in_cnn, in_lstm, dropout_rate)) return nn.Sequential(*layers) def forward(self, x): x = x.permute(1, 0) x = self.autoencoder.encoder(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = x.permute(1, 0) out = self.fc(x) return out, x
Editor is loading...
Leave a Comment