Untitled
unknown
plain_text
24 days ago
125 kB
2
Indexable
Never
from django.shortcuts import render from django.shortcuts import render, redirect from .forms import CSVFileUploadForm1 from django.http import JsonResponse from django.views.decorators.csrf import csrf_exempt from django.http import HttpResponse from django.template import loader from django.http import HttpResponse from dateutil.parser import parse import pandas as pd import numpy as np import json import pyarrow.csv as pc import pandas as pd entries1 = 0 entries2 = 0 entries3 = 0 entries4 = 0 entries5 = 0 entries6 = 0 entries7 = 0 entries8 = 0 claim_entries1 = 0 claim_entries2 = 0 claim_entries3 = 0 claim_entries = 0 os_entries1 = 0 os_entries2 = 0 os_entries3 = 0 column = '' def os_file_upload(request): message = "" columns = [] is_merged = False file_details = [] # List to store file names and number of entries total_entries = 0 # Variable to store the total number of entries across all files if request.method == 'POST': form = CSVFileUploadForm1(request.POST, request.FILES) if form.is_valid(): files = request.FILES.getlist('files') dataframes = [] for file in files: df = pd.read_csv(file) num_entries = len(df) total_entries += num_entries # Add to total entries file_details.append({'name': file.name, 'entries': num_entries}) dataframes.append(df) merged_df = pd.concat(dataframes) # Convert the merged DataFrame to JSON and store it in the session request.session['merged_df'] = merged_df.to_json(orient='split') message = "Files Merged Successfully" is_merged = True # Store the column names in the session request.session['merged_columns'] = merged_df.columns.tolist() columns = merged_df.columns.tolist() else: form = CSVFileUploadForm1() return render(request, 'myapp/os_page.html', { 'form': form, 'message': message, 'is_merged': is_merged, 'columns': columns, 'file_details': file_details, # Pass the file details to the template 'total_entries': total_entries # Pass the total entries to the template }) # Your utility functions def convert_numpy(obj): if isinstance(obj, np.generic): return obj.item() # np.generic includes np.int64, np.float64 and more elif isinstance(obj, dict): return {k: convert_numpy(v) for k, v in obj.items()} elif isinstance(obj, list): return [convert_numpy(v) for v in obj] elif isinstance(obj, np.ndarray): return obj.tolist() else: return obj def store_results_in_session(request, key, results): #print(f"Storing data for key: {key}") # Debug print request.session[key] = results def get_results_from_session(request, key): data = request.session.get(key) #print(f"Retrieving data for key: {key}, Data: {data}") # Debug print return data def clear_results_from_session(request, key): if key in request.session: del request.session[key] def process_os_data(request): print("hello world") # Check if the 'merged_df' key exists in the session if 'merged_df' in request.session: # Retrieve the merged DataFrame from the session merged_df_json = request.session['merged_df'] merged_df = pd.read_json(merged_df_json, orient='split') print("Here is merged", merged_df.head()) else: return HttpResponse("Merged DataFrame not found in session.", status=400) def try_parsing_date(date_str): """ Attempts to parse the date string using multiple formats. Returns the date if parsing is successful; otherwise, returns pd.NaT. """ for fmt in ('%d-%m-%Y', '%d/%m/%Y','%Y-%m-%d %H:%M:%S'): # Add or modify formats as needed try: return pd.to_datetime(date_str, format=fmt) except (ValueError, TypeError): continue return pd.NaT # Return NaT if all parsing attempts fai def translate_format(input_format): format_translation = { 'yyyy': '%Y', # Replace 'yyyy' first to prevent conflict with 'yy' 'mm': '%m', 'dd': '%d', 'yy': '%y' # 'yy' should be replaced after 'yyyy' has been replaced } for key, value in format_translation.items(): input_format = input_format.replace(key, value) return input_format # lossDate= request.POST.get('LOSS_DATE') # date_format = request.POST.get('date_format') # Process the DataFrame based on the user's input if request.method == 'POST': print("check1") # Determine if 'Yes' was selected for claimId availability selected_values = request.session.get('selectedValues', []) claimId_available = request.POST.get('claimId_available') == 'yes' if selected_values is not None and selected_values: uid_column = 'UID' merged_df['UID'] = merged_df[selected_values].astype(str).agg('-'.join, axis=1) print("Selected values",selected_values) print("column is",merged_df[uid_column]) else: uid_column = request.POST.get('UID') print("UID COL IS",uid_column) # uid_column = request.POST.get('UID') loss_date_column = request.POST.get('LOSS_DATE') claim_type_column = request.POST.get('CLAIM_TYPE') claim_amount_column = request.POST.get('CLAIM_AMOUNT') AsAtDate = request.POST.get('AsAtDate') AsAtDate_Selection = request.POST.get('showSection') print("AsAtDate selection is",AsAtDate) selected_value = request.POST.get('selected_value') #selected value for AsAtDate print("column is ",column) #Selected column for AsAtDate print("Value is",selected_value) if AsAtDate_Selection =='yes': merged_df = merged_df[merged_df[column] == selected_value] print("After AsAtDate removal is",merged_df[column]) print("2 merged", merged_df.head()) received_format = request.POST.get('date_format') null_lossDate1 = merged_df[loss_date_column].isnull() null_entries_df1 = merged_df[null_lossDate1] null_lossDate_df1 = pd.DataFrame(null_entries_df1) translated_format = translate_format(received_format) print("Translated format:", translated_format) merged_df[loss_date_column] = merged_df[loss_date_column].apply(lambda x: try_parsing_date(x)) print("3 merged", merged_df.head()) # merged_df[payment_column] = pd.to_datetime( # merged_df[payment_column],format=translated_format, errors='coerce' # ) print("4 merged", merged_df.head()) print("*****************************") print("**********************") print('TOTAL DF',merged_df.head()) print("UID COMING",uid_column) print("UID",merged_df['UID'].head()) print("LossDate",merged_df[loss_date_column].head()) print("ClaimType",merged_df[claim_type_column].head()) claim_id_column = request.POST.get('CLAIMID') if claimId_available: No_Claim_df = merged_df.groupby([uid_column,claim_id_column,claim_type_column,loss_date_column]).agg({ claim_amount_column: 'sum', }).reset_index() No_Claim_df.columns = ['UID','ClaimId', 'ClaimType', 'LossDate', 'OsPaid'] else: No_Claim_df= merged_df.groupby(['UID', loss_date_column,claim_type_column])[claim_amount_column].sum().reset_index() No_Claim_df.columns = ['UID', 'LossDate','ClaimType', 'OsPaid'] df_display=No_Claim_df print("converted claims data",No_Claim_df) print("This is not_claim_df",No_Claim_df.head()) print("check4") claims_data = request.session.get('No_Claim_df') if claims_data: if claimId_available: claims_data = pd.read_json(claims_data, orient='split') print("check 88") print("**************************************") print(claims_data.head()) print("**************************************") claims_data.columns = ['UID','ClaimId', 'ClaimType', 'LossDate', 'ClaimPaid'] claims_data['LossDate'] = pd.to_datetime(claims_data['LossDate'], unit='ms') print("check 90") print("**************************************") print(claims_data.head()) print("**************************************") claims_data['UID'] = claims_data['UID'].astype(str) No_Claim_df['UID'] = No_Claim_df['UID'].astype(str) claims_data['ClaimId'] = claims_data['ClaimId'].astype(str) No_Claim_df['ClaimId'] = No_Claim_df['ClaimId'].astype(str) claims_data['LossDate'] = claims_data['LossDate'].astype(str) No_Claim_df['LossDate'] = No_Claim_df['LossDate'].astype(str) claims_data['ClaimType'] = claims_data['ClaimType'].astype(str) No_Claim_df['ClaimType'] = No_Claim_df['ClaimType'].astype(str) else: claims_data = pd.read_json(claims_data, orient='split') claims_data.columns = ['UID', 'LossDate','ClaimType', 'ClaimPaid'] claims_data['UID'] = claims_data['UID'].astype(str) No_Claim_df['UID'] = No_Claim_df['UID'].astype(str) claims_data['LossDate'] = claims_data['LossDate'].astype(str) No_Claim_df['LossDate'] = No_Claim_df['LossDate'].astype(str) claims_data['ClaimType'] = claims_data['ClaimType'].astype(str) No_Claim_df['ClaimType'] = No_Claim_df['ClaimType'].astype(str) else: claims_data=pd.DataFrame() print("Both data") print(claims_data) print(No_Claim_df) if not claims_data.empty: print("data of claims ",claims_data.head()) print("data of Os ",No_Claim_df.head()) #outter = pd.merge(claims_data, No_Claim_df, on=['UID','LossDate','ClaimType'], how='outer') # if not 'ClaimType' in claims_data: if 'ClaimType' in claims_data.columns: if claimId_available: outter = pd.merge(claims_data, No_Claim_df, on=['UID','ClaimId', 'ClaimType', 'LossDate'], how='outer') else: outter = pd.merge(claims_data, No_Claim_df, on=['UID', 'LossDate', 'ClaimType'], how='outer') else: No_Claim_df2= No_Claim_df.groupby(['UID', loss_date_column])[claim_amount_column].sum().reset_index() outter = pd.merge(claims_data, No_Claim_df2, on=['UID', 'LossDate'], how='outer') print("Outter data is ",outter.head()) outter['ClaimPaid'].fillna(0, inplace=True) outter['OsPaid'].fillna(0, inplace=True) outter['ClaimPaid'] = pd.to_numeric(outter['ClaimPaid'], errors='coerce') outter['OsPaid'] = pd.to_numeric(outter['OsPaid'], errors='coerce') outter['ReportedClaim'] = outter['ClaimPaid'] + outter['OsPaid'] negative_reported_claims = outter[outter['ReportedClaim'] <= 0] print("Reported Claims data is ",outter.head()) else: outter=pd.DataFrame() outter1 = outter.copy() check_df = outter1 if not claims_data.empty: check_df['LossDate'] = check_df['LossDate'].astype(str) #check_df['LossDate'] = check_df['LossDate'].dt.strftime(translated_format) claim_amounts_df = No_Claim_df.copy() # Convert the ClaimAmount_SUM column to numeric, setting errors to NaN claim_amounts_df['OsPaid'] = pd.to_numeric(claim_amounts_df['OsPaid'], errors='coerce') nan_count_before = claim_amounts_df['OsPaid'].isna().sum() # Drop NaN values that resulted from the conversion claim_amounts_df.dropna(inplace=True) os_entries1=nan_count_before # Filter the DataFrame to only contain negative values negative_claims_df = claim_amounts_df[claim_amounts_df['OsPaid'] < 0] # Count the number of negative ClaimAmount_SUM entries negative_claims_count = negative_claims_df['OsPaid'].count() print(f"The count of negative OsPaid entries is: {negative_claims_count}") # try: # original_count = len(merged_df) # print(original_count) # print(outter.shape) # outter['LossDate'] = pd.to_datetime( # outter['LossDate'], # format=translated_format, errors='coerce' # #errors='coerce' # This will replace non-parsable dates with NaT # ) # # Drop rows where dates could not be parsed # print("Check end entries before",outter['LossDate']) # #merged_df.dropna(subset=[loss_date_column], inplace=True) # final_count = len(outter) # entries2 = original_count - final_count # # print("Enrties removed due to Date conversion of edorsement ",entries2) # print(f"Total entries: {original_count}") # # print(f"Removed entries: {removed_count}") # print(f"Total after removal: {final_count}") # print("Check end entries After",outter['LossDate']) # except ValueError as e: # print(f"There was an issue with the date format: {e}") outter['LossDate'] = outter['LossDate'].apply(lambda x: try_parsing_date(x)) original_count = len(merged_df) print(original_count) final_count = len(outter) entries2 = original_count - final_count # print("Enrties removed due to Date conversion of edorsement ",entries2) print(f"Total entries: {original_count}") # print(f"Removed entries: {removed_count}") print(f"Total after removal: {final_count}") print("Check end entries After",outter['LossDate']) outter['Period'] = outter['LossDate'].dt.year outter['claim_count'] = 1 # No_Claim_df['period'] = No_Claim_df['LossDate'].dt.year # Assuming 'No_Claim_df' is your DataFrame print("No_Claim",No_Claim_df.head()) # Store the DataFrame in the session for download # Group by 'UID' and 'Period', and then calculate the sum of 'claim_count' and 'ClaimAmount_SUM' # grouped_df = outter.groupby(['UID', 'Period']).agg({ # 'claim_count': 'sum', # 'OSPaid': 'sum' # }).reset_index() # print("this is grouped_df",grouped_df.head()) consol = outter # No_Claim_df.drop(['Period', 'claim_count'], axis=1, inplace=True) outter['LossDate'] = outter['LossDate'].dt.strftime(translated_format) # The grouped_df DataFrame now contains the sum of 'claim_count' and 'ClaimAmount_SUM' for each combination of 'UID' and 'Period' #new_df_json = request.session.get('new_df') new_df_json = request.session.get('mapping_data_final') if not new_df_json: # Check if new_df_json is empty new_df_json = request.session.get('new_df') # print("new DF is 0",new_df.head()) if new_df_json: new_df = pd.read_json(new_df_json, orient='split') print("New DF head",new_df.head()) print("Consol DF head",consol.head()) consol['UID'] = consol['UID'].astype(str) consol['Period'] = consol['Period'].astype(str) new_df['UID'] = new_df['UID'].astype(str) new_df['Period'] = new_df['Period'].astype(str) else: # Handle the case where new_df is not in the session new_df = pd.DataFrame() # or handle this scenario appropriately if not new_df.empty: result_df = new_df.merge(consol, on=['UID', 'Period'], how='left') #new_df is premium and consol is claims result_df[consol.columns] = result_df[consol.columns].fillna(0) else: result_df = pd.DataFrame() # or handle this scenario appropriately # Replace 'Column1', 'Column2', etc. with actual column names from new_df # result_df = result_df.dropna(subset=['UID', 'Period']) # print("Successful matches:\n", result_df) def convert_to_date(value): try: numeric_value = pd.to_numeric(value) return pd.to_datetime(numeric_value, unit='ms').strftime('%d-%m-%Y') except ValueError: return 'Invalid Date' # Assuming `check_df` is your DataFrame with the 'lossdate' column # Store the DataFrame in the session for download if not claims_data.empty: request.session['check_df'] = check_df.to_json(orient='split') # check_df['LossDate'] = pd.to_datetime( # check_df['LossDate'],format=translated_format, errors='coerce' # ) # check_df['LossDate'] = check_df['LossDate'].dt.strftime(translated_format) #check_df['LossDate'] = check_df['LossDate'].apply(convert_to_date) request.session['result_df'] = result_df.to_json(orient='split') consol = result_df.head().to_html(classes='dataframe', index=False, escape=False) request.session['download_df'] = df_display.to_json(orient='split') #grouped_df_html = grouped_df.to_html(classes='dataframe', index=False, escape=False) result_df_html = result_df.to_html(classes='dataframe', index=False, escape=False) check_df1 = pd.read_json(request.session.get('check_df', '{}'), orient='split') result_df1 = pd.read_json(request.session.get('result_df', '{}'), orient='split') request.session['null_lossDate_df1'] = null_lossDate_df1.to_json(orient='split') request.session['negative_reported_claims'] = negative_reported_claims.to_json(orient='split') null_lossDate_df1_len = len(null_lossDate_df1) negative_reported_claims_len = len(negative_reported_claims) results = { 'df_html': df_display.head().to_html(classes='dataframe', index=False, escape=False), 'grouped_df_html': check_df.head().to_html(classes='dataframe', index=False, escape=False), 'new_df_html': consol, 'download_ready': True, # 'check_result': check_df1.to_dict('records') if isinstance(check_df1, pd.DataFrame) else check_df1, # Convert DataFrame to list of dicts # 'result_result': result_df1.to_dict('records') if isinstance(result_df1, pd.DataFrame) else result_df1, # Convert DataFrame to list of dicts #'BlankPDate':null_payment.head().to_html(classes='dataframe', index=False, escape=False), 'null_lossDate_df1': null_lossDate_df1.head().to_html(classes='dataframe', index=False, escape=False), 'negative_reported_claims':negative_reported_claims.head().to_html(classes='dataframe', index=False, escape=False), 'null_lossDate_df1_len':null_lossDate_df1_len, 'negative_reported_claims_len':negative_reported_claims_len, } serializable_results = convert_numpy(results) # Store the serializable results in the session store_results_in_session(request, 'os_results', serializable_results) # Redirect to the display view return redirect('display_os_results') #return render(request, 'myapp/osData.html', context) else: # Handle the case where method is not POST # For example, redirect to the home page or show an error message return HttpResponse("Invalid request.", status=400) def display_os_results(request): results = get_results_from_session(request, 'os_results') if results is None: return HttpResponse("No results available. Please go through the processing step first.") return render(request, 'myapp/osData.html', results) def claims_file_upload(request): message = "" columns = [] is_merged = False file_details = [] # List to store file names and number of entries total_entries = 0 # Variable to store the total number of entries across all files if request.method == 'POST': form = CSVFileUploadForm1(request.POST, request.FILES) if form.is_valid(): files = request.FILES.getlist('files') dataframes = [] for file in files: df = pd.read_csv(file) num_entries = len(df) total_entries += num_entries # Add to total entries file_details.append({'name': file.name, 'entries': num_entries}) dataframes.append(df) merged_df = pd.concat(dataframes) # Convert the merged DataFrame to JSON and store it in the session request.session['merged_df'] = merged_df.to_json(orient='split') message = "Files Merged Successfully" is_merged = True # Store the column names in the session request.session['merged_columns'] = merged_df.columns.tolist() columns = merged_df.columns.tolist() else: form = CSVFileUploadForm1() return render(request, 'myapp/claims.html', { 'form': form, 'message': message, 'is_merged': is_merged, 'columns': columns, 'file_details': file_details, # Pass the file details to the template 'total_entries': total_entries # Pass the total entries to the template }) def process_claims_data(request): print("hello world") # Check if the 'merged_df' key exists in the session selected_values = request.session.get('selectedValues', []) print("Selected values are",selected_values) if 'merged_df' in request.session: # Retrieve the merged DataFrame from the session merged_df_json = request.session['merged_df'] merged_df = pd.read_json(merged_df_json, orient='split') print("Here is merged", merged_df.head()) else: return HttpResponse("Merged DataFrame not found in session.", status=400) print("aelected**********",selected_values) def translate_format(input_format): format_translation = { 'yyyy': '%Y', # Replace 'yyyy' first to prevent conflict with 'yy' 'mm': '%m', 'dd': '%d', 'yy': '%y' # 'yy' should be replaced after 'yyyy' has been replaced } for key, value in format_translation.items(): input_format = input_format.replace(key, value) return input_format # lossDate= request.POST.get('LOSS_DATE') # date_format = request.POST.get('date_format') def try_parsing_date(date_str): """ Attempts to parse the date string using multiple formats. Returns the date if parsing is successful; otherwise, returns pd.NaT. """ for fmt in ('%d-%m-%Y', '%d/%m/%Y','%Y-%m-%d %H:%M:%S'): # Add or modify formats as needed try: return pd.to_datetime(date_str, format=fmt) except (ValueError, TypeError): continue return pd.NaT # Return NaT if all parsing attempts fail # Process the DataFrame based on the user's input if request.method == 'POST': print("check1") # Determine if 'Yes' was selected for claimId availability total_entries=len(merged_df) claimId_available = request.POST.get('claimId_available') == 'yes' if selected_values is not None and selected_values: uid_column = 'UID' merged_df['UID'] = merged_df[selected_values].astype(str).agg('-'.join, axis=1) print("Selected values",selected_values) print("column is",merged_df[uid_column]) else: uid_column = request.POST.get('UID') print("UID COL IS",uid_column) #uid_column = request.POST.get('UID') loss_date_column = request.POST.get('LOSS_DATE') claim_type_column = request.POST.get('CLAIM_TYPE') claim_amount_column = request.POST.get('CLAIM_AMOUNT') # print("Initial") # print("UID",uid_column) # print("Loss Date",loss_date_column) # print("Claim Type",claim_type_column) # print("Claim Amount",claim_amount_column) if claimId_available: print("check2") claim_id_column1 = request.POST.get('CLAIMID') # Group by ClaimId and ClaimType if selected_values is not None and selected_values: uid_column1 = 'UID' merged_df['UID'] = merged_df[selected_values].astype(str).agg('-'.join, axis=1) print("Selected values",selected_values) print("column is",merged_df['UID']) else: uid_column1 = request.POST.get('UID1') print("UID COL IS",uid_column1) #uid_column1 = request.POST.get('UID1') lossDate = request.POST.get('LOSS_DATE1') claim_type_column1 = request.POST.get('CLAIM_TYPE1') claim_amount_column1 = request.POST.get('CLAIM_AMOUNT1') received_format = request.POST.get('date_format') translated_format = translate_format(received_format) print("Translated format:", translated_format) print("Before") print("LossDate column is ",merged_df[lossDate].head()) merged_df[lossDate] = merged_df[lossDate].apply(lambda x: try_parsing_date(x)) print("Data After Translating Formatting",merged_df.head()) null_lossDate = merged_df[lossDate].isnull() null_entries_df = merged_df[null_lossDate] null_lossDate_df = pd.DataFrame(null_entries_df) print("After") print("LossDate column is ",merged_df[lossDate].head()) one_to_one = merged_df.groupby(claim_id_column1).filter(lambda x: x[lossDate].nunique() > 1) print("1 merged", merged_df.head()) print("type is ",merged_df[lossDate].dtype) # Claim_df = merged_df.groupby([claim_id_column1, claim_type_column1]).agg({ # uid_column1: 'last', # lossDate: 'max', # claim_amount_column1: 'sum', # }).reset_index() print("UID column is ",merged_df[uid_column1].head()) print("Claim ID column is ",merged_df[claim_id_column1].head()) print("Claim Type column is ",merged_df[claim_type_column1].head()) print("LossDate column is ",merged_df[lossDate].head()) Claim_df = merged_df.groupby([uid_column1,claim_id_column1,claim_type_column1,lossDate]).agg({ claim_amount_column1: 'sum', }).reset_index() Claim_df.columns = ['UID','ClaimId', 'ClaimType', 'LossDate', 'ClaimPaid'] print("Data in the Claim_df ", Claim_df.head()) #Claim_df['LossDate'] = Claim_df['LossDate'].dt.strftime(translated_format) request.session['No_Claim_df'] = Claim_df.to_json(orient='split') claim_amounts_df = Claim_df.copy() # Convert the ClaimAmount_SUM column to numeric, setting errors to NaN claim_amounts_df['ClaimPaid'] = pd.to_numeric(claim_amounts_df['ClaimPaid'], errors='coerce') nan_count_before = claim_amounts_df['ClaimPaid'].isna().sum() # Drop NaN values that resulted from the conversion claim_amounts_df.dropna(subset=['ClaimPaid'], inplace=True) claim_entries1=nan_count_before total_after = claim_amounts_df.shape[0] # Filter the DataFrame to only contain negative values in 'ClaimPaid' negative_claims_df = claim_amounts_df[claim_amounts_df['ClaimPaid'] < 0] # Count the number of negative ClaimAmount_SUM entries negative_claims_count = negative_claims_df['ClaimPaid'].count() print(f"The count of negative ClaimAmount_SUM entries is: {negative_claims_count}") Claim_df['LossDate'] = Claim_df['LossDate'].apply(lambda x: try_parsing_date(x)) # try: # original_count = len(merged_df) # print(original_count) # print(Claim_df.shape) # Claim_df['LossDate'] = pd.to_datetime( # Claim_df['LossDate'], # format=translated_format, errors='coerce' # #errors='coerce' # This will replace non-parsable dates with NaT # ) # # Drop rows where dates could not be parsed # print("Check end entries before",Claim_df['LossDate']) # #merged_df.dropna(subset=[loss_date_column], inplace=True) # final_count = len(Claim_df) # entries2 = original_count - final_count # # print("Enrties removed due to Date conversion of edorsement ",entries2) # print(f"Total entries: {original_count}") # # print(f"Removed entries: {removed_count}") # print(f"Total after removal: {final_count}") # print("Check end entries After",Claim_df['LossDate']) # except ValueError as e: # print(f"There was an issue with the date format: {e}") #df_display = Claim_df original_count = len(merged_df) print(original_count) final_count = len(Claim_df) entries2 = original_count - final_count # print("Enrties removed due to Date conversion of edorsement ",entries2) print(f"Total entries: {original_count}") # print(f"Removed entries: {removed_count}") print(f"Total after removal: {final_count}") print("Check end entries After",Claim_df['LossDate']) Claim_df['Period'] = Claim_df['LossDate'].dt.year Claim_df['claim_count'] = 1 #Claim_df['period'] = No_Claim_df['LossDate'].dt.year print("*****************************") print("DF_DISPLAYYYYYYYYYY",Claim_df.head()) print("*****************************") print("check 4") # Store the DataFrame in the session for download print("NaN in UID:", Claim_df['UID'].isna().sum()) print("NaN in Period:", Claim_df['Period'].isna().sum()) Claim_df['UID'] = Claim_df['UID'].astype(str) Claim_df['Period'] = Claim_df['Period'].astype(str) check_df = Claim_df.groupby(['UID', 'Period']).agg({ 'claim_count': 'sum', 'ClaimPaid': 'sum' }).reset_index() consol = check_df print("*********************************") print("CHECK DF IS ",check_df.head()) print("*************************************") Claim_df.drop(['Period', 'claim_count'], axis=1, inplace=True) #No_Claim_df['LossDate'] = No_Claim_df['LossDate'].dt.strftime(translated_format) Claim_df['LossDate'] = Claim_df['LossDate'].dt.strftime(translated_format) df_display = Claim_df request.session['download_df'] = df_display.to_json(orient='split') new_df_json = request.session.get('new_df') if new_df_json: new_df = pd.read_json(new_df_json, orient='split') new_df['UID'] = new_df['UID'].astype(str) new_df['Period'] = new_df['Period'].astype(str) else: # Handle the case where new_df is not in the session new_df = pd.DataFrame() # or handle this scenario appropriately consol['UID'] = consol['UID'].astype(str) consol['Period'] = consol['Period'].astype(str) if not new_df.empty: result_df = new_df.merge(consol, on=['UID', 'Period'], how='left') #new_df is premium and consol is claims result_df[consol.columns] = result_df[consol.columns].fillna(0) else: result_df = consol # or handle this scenario appropriately #request.session['download_df'] = Claim_df.to_json(orient='split') request.session['check_df'] = check_df.to_json(orient='split') request.session['result_df'] = result_df.to_json(orient='split') request.session['consol_df'] = result_df.to_json(orient='split') check_df = check_df.head().to_html(classes='dataframe', index=False, escape=False) consol = result_df.head().to_html(classes='dataframe', index=False, escape=False) else: one_to_one = pd.DataFrame() identifier_format = request.POST.get('identifier_format') print("*******************",identifier_format) print("2 merged", merged_df.head()) received_format = request.POST.get('date_format') translated_format = translate_format(received_format) print("Translated format:", translated_format) merged_df[loss_date_column] = merged_df[loss_date_column].apply(lambda x: try_parsing_date(x)) print("3 merged", merged_df.head()) # merged_df[payment_column] = pd.to_datetime( # merged_df[payment_column],format=translated_format, errors='coerce' # ) print("4 merged", merged_df.head()) print("*****************************") print("**********************") print('TOTAL DF',merged_df.head()) print("UID COMING",uid_column) print("UID",merged_df['UID'].head()) print("LossDate",merged_df[loss_date_column].head()) print("ClaimType",merged_df[claim_type_column].head()) null_lossDate_count = merged_df[loss_date_column].isnull().sum() null_lossDate = merged_df[loss_date_column].isnull() null_entries_df = merged_df[null_lossDate] null_lossDate_df = pd.DataFrame(null_entries_df) negative_claims_df = merged_df[merged_df[claim_amount_column] < 0] if identifier_format == 'ULC': No_Claim_df= merged_df.groupby(['UID', loss_date_column,claim_type_column])[claim_amount_column].sum().reset_index() No_Claim_df.columns = ['UID', 'LossDate','ClaimType', 'ClaimPaid'] else: No_Claim_df= merged_df.groupby(['UID', loss_date_column])[claim_amount_column].sum().reset_index() No_Claim_df.columns = ['UID', 'LossDate', 'ClaimPaid'] request.session['No_Claim_df'] = No_Claim_df.to_json(orient='split') print("This is not_claim_df",No_Claim_df.head()) print("check4") claim_amounts_df = No_Claim_df.copy() # Convert the ClaimAmount_SUM column to numeric, setting errors to NaN claim_amounts_df['ClaimPaid'] = pd.to_numeric(claim_amounts_df['ClaimPaid'], errors='coerce') # Drop NaN values that resulted from the conversion claim_amounts_df.dropna(inplace=True) nan_count_before = claim_amounts_df['ClaimPaid'].isna().sum() # Drop NaN values that resulted from the conversion claim_amounts_df.dropna(subset=['ClaimPaid'], inplace=True) claim_entries1=nan_count_before total_after = claim_amounts_df.shape[0] # Filter the DataFrame to only contain negative values # Count the number of negative ClaimAmount_SUM entries negative_claims_count = negative_claims_df['ClaimPaid'].count() print(f"The count of negative ClaimPaid entries is: {negative_claims_count}") No_Claim_df['LossDate'] = No_Claim_df['LossDate'].apply(lambda x: try_parsing_date(x)) # try: # original_count = len(merged_df) # print(original_count) # print(No_Claim_df.shape) # No_Claim_df['LossDate'] = pd.to_datetime( # No_Claim_df['LossDate'], # format=translated_format, errors='coerce' # #errors='coerce' # This will replace non-parsable dates with NaT # ) # # Drop rows where dates could not be parsed # print("Check end entries before",No_Claim_df['LossDate']) # #merged_df.dropna(subset=[loss_date_column], inplace=True) # final_count = len(No_Claim_df) # entries2 = original_count - final_count # # print("Enrties removed due to Date conversion of edorsement ",entries2) # print(f"Total entries: {original_count}") # # print(f"Removed entries: {removed_count}") # print(f"Total after removal: {final_count}") # print("Check end entries After",No_Claim_df['LossDate']) # except ValueError as e: # print(f"There was an issue with the date format: {e}") original_count = len(merged_df) print(original_count) final_count = len(No_Claim_df) entries2 = original_count - final_count # print("Enrties removed due to Date conversion of edorsement ",entries2) print(f"Total entries: {original_count}") # print(f"Removed entries: {removed_count}") print(f"Total after removal: {final_count}") print("Check end entries After",No_Claim_df['LossDate']) No_Claim_df['Period'] = No_Claim_df['LossDate'].dt.year No_Claim_df['claim_count'] = 1 # No_Claim_df['period'] = No_Claim_df['LossDate'].dt.year # Assuming 'No_Claim_df' is your DataFrame print("No_Claim",No_Claim_df.head()) # Store the DataFrame in the session for download # Group by 'UID' and 'Period', and then calculate the sum of 'claim_count' and 'ClaimAmount_SUM' grouped_df = No_Claim_df.groupby(['UID', 'Period']).agg({ 'claim_count': 'sum', 'ClaimPaid': 'sum' }).reset_index() print("this is grouped_df",grouped_df.head()) check_df = grouped_df consol = grouped_df No_Claim_df.drop(['Period', 'claim_count'], axis=1, inplace=True) No_Claim_df['LossDate'] = No_Claim_df['LossDate'].dt.strftime(translated_format) df_display = No_Claim_df # The grouped_df DataFrame now contains the sum of 'claim_count' and 'ClaimAmount_SUM' for each combination of 'UID' and 'Period' new_df_json = request.session.get('new_df') # print("new DF is 0",new_df.head()) if new_df_json: new_df = pd.read_json(new_df_json, orient='split') consol['UID'] = consol['UID'].astype(str) consol['Period'] = consol['Period'].astype(str) new_df['UID'] = new_df['UID'].astype(str) new_df['Period'] = new_df['Period'].astype(str) else: # Handle the case where new_df is not in the session new_df = pd.DataFrame() # or handle this scenario appropriately if not new_df.empty: result_df = new_df.merge(consol, on=['UID', 'Period'], how='left') #new_df is premium and consol is claims result_df[consol.columns] = result_df[consol.columns].fillna(0) else: result_df = pd.DataFrame() # or handle this scenario appropriately print("result df s") # Replace 'Column1', 'Column2', etc. with actual column names from new_df # result_df = result_df.dropna(subset=['UID', 'Period']) # print("Successful matches:\n", result_df) # Store the DataFrame in the session for download request.session['check_df'] = check_df.to_json(orient='split') request.session['result_df'] = result_df.to_json(orient='split') request.session['NullLossDate'] = null_lossDate_df.to_json(orient='split') check_df = check_df.head().to_html(classes='dataframe', index=False, escape=False) consol = result_df.head().to_html(classes='dataframe', index=False, escape=False) request.session['download_df'] = df_display.to_json(orient='split') #grouped_df_html = grouped_df.to_html(classes='dataframe', index=False, escape=False) result_df_html = result_df.to_html(classes='dataframe', index=False, escape=False) check_df1 = pd.read_json(request.session.get('check_df', '{}'), orient='split') result_df1 = pd.read_json(request.session.get('result_df', '{}'), orient='split') # results = { # 'df_html': df_display.head().to_html(classes='dataframe', index=False, escape=False), # 'grouped_df_html': check_df, # 'new_df_html': consol, # 'download_ready': True, # 'check_result':check_df1, # 'result_result':result_df1, # } NullLossDate_len = len(null_lossDate_df) negative_claim_entries_len = len(negative_claims_df) one_to_one_len = len(one_to_one) request.session['NullLossDate'] = null_lossDate_df.to_json(orient='split') request.session['negative_claim_entries'] = negative_claims_df.to_json(orient='split') request.session['one_to_one'] = one_to_one.to_json(orient='split') results = { 'df_html': df_display.head().to_html(classes='dataframe', index=False, escape=False), 'grouped_df_html': check_df.to_html(classes='dataframe', index=False, escape=False) if isinstance(check_df, pd.DataFrame) else check_df, # Assuming check_df is a DataFrame 'new_df_html': consol.to_html(classes='dataframe', index=False, escape=False) if isinstance(consol, pd.DataFrame) else consol, # Assuming consol is a DataFrame 'download_ready': True, # 'check_result': check_df1.to_dict('records') if isinstance(check_df1, pd.DataFrame) else check_df1, # Convert DataFrame to list of dicts # 'result_result': result_df1.to_dict('records') if isinstance(result_df1, pd.DataFrame) else result_df1, # Convert DataFrame to list of dicts 'NullLossDate': null_lossDate_df.head().to_html(classes='dataframe', index=False, escape=False), 'negative_claim_entries':negative_claims_df.head().to_html(classes='dataframe', index=False, escape=False), 'one_to_one':one_to_one.head().to_html(classes='dataframe', index=False, escape=False), #'BlankPDate':null_payment.head().to_html(classes='dataframe', index=False, escape=False), 'NaN_Claim':claim_entries1, 'Total_Entries1':total_entries, 'Total_after1':total_after, 'NullLossDate_len':NullLossDate_len, 'negative_claim_entries_len':negative_claim_entries_len, 'one_to_one_len':one_to_one_len, } serializable_results = convert_numpy(results) # Store the serializable results in the session store_results_in_session(request, 'claims_results', serializable_results) # Redirect to the display view # Redirect to the display view return redirect('display_claims_results') # Render the template with the context #return render(request, 'myapp/claimData.html', context) else: # Handle the case where method is not POST # For example, redirect to the home page or show an error message return HttpResponse("Invalid request.", status=400) def display_claims_results(request): results = get_results_from_session(request, 'claims_results') if results is None: return HttpResponse("No results available. Please go through the processing step first.") return render(request, 'myapp/claimData.html', results) def display_results(request): results = get_results_from_session(request, 'premium_results') if results is None: return HttpResponse("No results available. Please go through the processing step first.") return render(request, 'myapp/navbar.html', results) import tempfile import os import sys import pandas as pd from django.shortcuts import render # Assuming CSVFileUploadForm is defined elsewhere in your code from django.shortcuts import render from .forms import CSVFileUploadForm import pandas as pd import pyarrow.csv as pc import pandas as pd from django.shortcuts import render from .forms import CSVFileUploadForm # Ensure this is correctly imported from your forms module from .models import MergedDataModel2 def flush_session(request): request.session.flush() return JsonResponse({'message': 'Session has been flushed successfully!'}) def merge_and_display(request): print("*****************Loading Data*******************") message = "" columns = [] file_details = [] total_entries = 0 is_merged = False dataframes = [] if request.method == 'POST': form = CSVFileUploadForm1(request.POST, request.FILES) if form.is_valid(): files = request.FILES.getlist('files') dataframes = [] for file in files: df = pd.read_csv(file) num_entries = len(df) total_entries += num_entries # Add to total entries file_details.append({'name': file.name, 'entries': num_entries}) dataframes.append(df) merged_df = pd.concat(dataframes) # Convert the merged DataFrame to JSON and store it in the session request.session['merged_df'] = merged_df.to_json(orient='split') message = "Files Merged Successfully" is_merged = True # Store the column names in the session request.session['merged_columns'] = merged_df.columns.tolist() columns = merged_df.columns.tolist() # Save the merged DataFrame to the database json_data = merged_df.to_json(orient='split') MergedDataModel2.objects.create( file_name='merged_file', # Use a suitable file name or identifier file_path='csv_files/merged_file.csv', # Optional: store the path if needed data=json_data ) else: form = CSVFileUploadForm1() return render(request, 'myapp/upload.html', { 'form': form, 'message': message, 'is_merged': is_merged, 'columns': columns, 'file_details': file_details, 'total_entries': total_entries, }) def fetch_unique_dates(request): # Attempt to load the DataFrame from the session merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split') print(merged_df.head()) # Get the column name from the request column = request.GET.get('column', '') #Column is name of cancellation column if column: try: # Ensure the column exists in the DataFrame to avoid KeyError if column in merged_df.columns: unique_values = sorted(merged_df[column].dropna().unique().tolist()) return JsonResponse({'unique_values': unique_values}) else: return JsonResponse({'error': f'Column {column} not found in DataFrame'}, status=404) except Exception as e: # Log the error or print to the console print(f"Error processing column {column}: {e}") return JsonResponse({'error': 'Internal Server Error'}, status=500) else: return JsonResponse({'error': 'No column specified'}, status=400) def select_column_view(request): merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split') totalEntries= len(merged_df) columns = merged_df.columns.tolist() return render(request, 'myapp/select_column.html', {'columns': columns}) def get_columns(request): # Load the DataFrame from the session merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split') # Get the column names of the DataFrame columns = merged_df.columns.tolist() # Return the column names as a JSON response return JsonResponse({'columns': columns}) # def get_columns(request): # premium_csv = pd.read_csv(request.FILES.get('premium_file')) # excel_file = pd.ExcelFile(request.FILES.get('excel_file')) # print("Premium CSV Columns:", premium_csv.columns.tolist()) # This will show the column names # premium_columns = premium_csv.columns.tolist() # excel_columns = excel_file.sheet_names # return JsonResponse({'premium_columns': premium_columns, 'excel_columns': excel_columns}) def get_columns1(request): # Load the DataFrame from the session merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split') # Assume 'premium_columns' and 'excel_columns' are predefined or calculated premium_columns = [col for col in merged_df.columns if "premium" in col] # Example condition excel_columns = [col for col in merged_df.columns if col not in premium_columns] # Return the column names as a JSON response return JsonResponse({'premium_columns': premium_columns, 'excel_columns': excel_columns}) def get_unique_values(request): global column # Load the dataframe from the session merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split') column = request.GET.get('column', '') unique_values = merged_df[column].unique().tolist() request.session['unique_values'] = unique_values print(request.POST) return JsonResponse({'unique_values': unique_values}) def get_unique_values1(request): column_name = request.GET.get('column') if not column_name: return JsonResponse({'error': 'Column name is required'}, status=400) # Assuming you have your DataFrame stored in the session or otherwise accessible df = pd.read_json(request.session.get('merged_df', '{}'), orient='split') if column_name not in df.columns: return JsonResponse({'error': 'Invalid column name'}, status=400) unique_values = df[column_name].value_counts().reset_index().values.tolist() data = [{'value': value[0], 'count': value[1]} for value in unique_values] return JsonResponse(data, safe=False) def get_values(request): global column # Load the dataframe from the session merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split') column = request.GET.get('column', '') values = merged_df[column].tolist() print(request.POST) return JsonResponse({'values': values}) def process_data(request): def try_parsing_date(date_str): """ Attempts to parse the date string using multiple formats. Returns the date if parsing is successful; otherwise, returns pd.NaT. """ for fmt in ('%d-%m-%Y', '%d/%m/%Y','%Y-%m-%d %H:%M:%S'): # Add or modify formats as needed try: return pd.to_datetime(date_str, format=fmt) except (ValueError, TypeError): continue return pd.NaT # Return NaT if all parsing attempts fail print("entered in process") selected_values = request.session.get('selectedValues', []) print("Selected values are",selected_values) import pandas as pd global entries1, entries2, entries3, entries4, entries5, entries6,filtered_df try: # Load the dataframe from the session merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split') if selected_values is not None and selected_values: uid_col = 'UID' merged_df['UID'] = merged_df[selected_values].astype(str).agg('-'.join, axis=1) print("Selected values",selected_values) print("column is",merged_df[uid_col]) print("In condition") else: uid_col = request.POST.get('uid') print("UID COL IS",uid_col) date_format = request.POST.get('date_format') print("Format is",date_format) total_counts = len(merged_df) unique_values2 = request.session.get('unique_values', []) print("***********************************************************") print("Unique values are",unique_values2) start_dates = request.POST.getlist('start_date[]') end_dates = request.POST.getlist('end_date[]') #convert start and end date to date time for column_name in start_dates: if column_name in merged_df.columns: merged_df[column_name] = merged_df[column_name].apply(lambda x: try_parsing_date(x)) print(f"After conversion, dtype of {column_name}: {merged_df[column_name].dtype}") print("END DATE COLUMNS BELOW") # Process each column listed in end_dates for column_name in end_dates: if column_name in merged_df.columns: merged_df[column_name] = merged_df[column_name].apply(lambda x: try_parsing_date(x)) print(f"After conversion, dtype of {column_name}: {merged_df[column_name].dtype}") group_by_types = request.POST.getlist('group_by_type[]') # group_by_type_start_date= request.POST.getlist('group_by_type_start_date[]') # group_by_type_end_date= request.POST.getlist('group_by_type_end_date[]') print("Start Dates:", start_dates) print("End Dates:", end_dates) print("Group By Types:", group_by_types) print("Counts:", len(unique_values2), len(start_dates), len(end_dates), len(group_by_types)) print("***************************************************************") # 1. Make a copy of merged_df # 2. Sort data in ascending on the basis of endorsement_date_col and uid_col #uid_col = request.POST.get('uid') print("UID COLUMN 1",uid_col) original_count = len(merged_df) null_uids_df = merged_df[merged_df[uid_col].isnull()] merged_df.dropna(subset=[uid_col], inplace=True) final_count = len(merged_df) entries1 = original_count - final_count print("UIDS Removed due to NUll are: ",entries1) endorsement_date_col = request.POST.get('endoresement_date') null_end_df = merged_df[merged_df[endorsement_date_col].isnull()] null_count_endor = merged_df[endorsement_date_col].isnull().sum() # def translate_format(input_format): # format_translation = { # 'yyyy': '%Y', # Replace 'yyyy' first to prevent conflict with 'yy' # 'mm': '%m', # 'dd': '%d', # 'yy': '%y' # 'yy' should be replaced after 'yyyy' has been replaced # } # for key, value in format_translation.items(): # input_format = input_format.replace(key, value) # return input_format # # Assuming 'request' is your HttpRequest object from Django # received_format = request.POST.get('date_format') # translated_format = translate_format(received_format) # print("Translated format:", translated_format) # print("Data before Conversion") # print(merged_df[endorsement_date_col]) # merged_df[endorsement_date_col] = pd.to_datetime(merged_df[endorsement_date_col],format='%d-%m-%Y') # try: # original_count = len(merged_df) # print(original_count) # print(merged_df.shape) # merged_df[endorsement_date_col] = pd.to_datetime( # merged_df[endorsement_date_col], # format=translated_format, # #errors='coerce', # This will replace non-parsable dates with NaT # ) # # Drop rows where dates could not be parsed # print("Check end entries before",merged_df[endorsement_date_col]) # merged_df.dropna(subset=[endorsement_date_col], inplace=True) # final_count = len(merged_df) # entries2 = original_count - final_count # # print("Enrties removed due to Date conversion of edorsement ",entries2) # print(f"Total entries: {original_count}") # # print(f"Removed entries: {removed_count}") # print(f"Total after removal: {final_count}") # print("Check end entries After",merged_df[endorsement_date_col]) # print("*******************Converted *********************") # except ValueError as e: # print(f"There was an issue with the date format: {e}") def translate_format(input_format): # Improved translation to account for different separators like '-' and '/' format_translation = { 'yyyy': '%Y', # Replace 'yyyy' first to prevent conflict with 'yy' 'yy': '%y', # 'yy' should be replaced after 'yyyy' has been replaced 'mm': '%m', 'dd': '%d' } for key, value in format_translation.items(): input_format = input_format.replace(key, value) # Detect and handle separators in the input format dynamically for sep in ['-', '/', '.', ' ']: if sep in input_format: return input_format.replace(sep, '-') return input_format # Simulate getting the format from a request received_format = request.POST.get('date_format') translated_format = translate_format(received_format) # Convert dates using the translated format, handling errors try: original_count = len(merged_df) print("Original count:", original_count) # Apply 'try_parsing_date' to each value in the column merged_df[endorsement_date_col] = merged_df[endorsement_date_col].apply(lambda x: try_parsing_date(x)) # Optionally, you can still drop rows where dates could not be parsed and are NaT # If you prefer to keep these rows, you can comment out or remove the line below merged_df.dropna(subset=[endorsement_date_col], inplace=True) final_count = len(merged_df) print("Data after Conversion Endorsement Date") print(merged_df[endorsement_date_col]) print(f"Total entries: {original_count}") print(f"Total after removal: {final_count}") print("Check end entries After",merged_df[endorsement_date_col]) except Exception as e: # Catching a more general exception print(f"There was an issue with the date parsing: {e}") endor_datatype = merged_df[endorsement_date_col].dtype print("type of edorsement column ",endor_datatype) # merged_df[endorsement_date_col] = merged_df[endorsement_date_col].dt.strftime(date_format) copy_dataframe = merged_df.copy() print("UID COLUMN 2",uid_col) copy_dataframe.sort_values(by=[uid_col, endorsement_date_col], ascending=[True, True], inplace=True) print("UID COLUMN 3",uid_col) endor_datatype = copy_dataframe[endorsement_date_col].dtype print(f"The datatype of the '{endorsement_date_col}' column is: {endor_datatype}") radio_choice = request.POST.get('radio_button_choice', 'Last') # Default to 'Last' if no choice given selectedPreference = request.POST.get('selectedPreference') print("GOT THE SELECTED PREFERENCE",selectedPreference) # Handling duplicates in copy_dataframe if selectedPreference == "First": copy_dataframe = copy_dataframe.drop_duplicates(subset=uid_col, keep='first') else: # If choice is 'Last' or any other unexpected value copy_dataframe = copy_dataframe.drop_duplicates(subset=uid_col, keep='last') # 6. Only include uid_col, endorsement_date_col, other columns selected using additional other_col = request.POST.getlist('other') custom_selected_values = request.session.get('customSelectedValues', []) print("***********************************") print(custom_selected_values) print("***********************************") columns_to_display = [uid_col, endorsement_date_col] + custom_selected_values print("***********************************") print(columns_to_display) print("***********************************") negative_exposures = request.session.get('negative_exposures', []) # uid_col = request.POST.getlist('uid')[0] gross_premium_col = request.POST.getlist('gross_premium')[0] # uid_col = request.POST.get('uid') gross_premium_col = request.POST.get('gross_premium') print("actual column of gross",gross_premium_col) merged_df[gross_premium_col] = pd.to_numeric(merged_df[gross_premium_col], errors='coerce') merged_df[gross_premium_col] = merged_df[gross_premium_col].fillna(0) merged_df[gross_premium_col] = merged_df[gross_premium_col].astype(int) print("*****************Converted grois to numeric= type*******************") # Create the UID_DATAFRAME UID_DATAFRAME = merged_df.groupby(uid_col)[gross_premium_col].sum().reset_index() # endorsement_date_col = request.POST.get('endoresement_date') # start_date_col = request.POST.get('start_date') # try: # original_count = len(merged_df) # print("Original count:", original_count) # # Use the translated format for conversion, with error handling # merged_df[start_date_col] = merged_df[start_date_col].apply(lambda x: try_parsing_date(x)) # # Drop rows where dates could not be parsed # merged_df.dropna(subset=[start_date_col], inplace=True) # final_count = len(merged_df) # print("Data after Conversion START DATE COLUMN") # print(merged_df[start_date_col]) # print(f"Total entries: {original_count}") # print(f"Total after removal: {final_count}") # print("Check end entries After",merged_df[start_date_col]) # except ValueError as e: # print(f"There was an issue with the date format: {e}") print("Papu2") cancellation_col = request.POST.get('cancellation') # try: # original_count = len(merged_df) # print("Original count:", original_count) # # Use the translated format for conversion, with error handling # merged_df[cancellation_col] = merged_df[cancellation_col].apply(lambda x: try_parsing_date(x)) # # Drop rows where dates could not be parsed # merged_df.dropna(subset=[cancellation_col], inplace=True) # final_count = len(merged_df) # print("Data after Conversion Cancellation column") # print(merged_df[cancellation_col]) # print(f"Total entries: {original_count}") # print(f"Total after removal: {final_count}") # print("Check end entries After",merged_df[cancellation_col]) # except ValueError as e: # print(f"There was an issue with the date format: {e}") other_col = request.POST.getlist('other') print("names of cols") print(merged_df.columns) print("*****************Converted All colums*******************") # POSITIVE_ID = request.POST.get('POSITIVE_ID') # try: # original_count = len(merged_df) # print("Original count:", original_count) # # Use the translated format for conversion, with error handling # merged_df[POSITIVE_ID] = merged_df[POSITIVE_ID].apply(lambda x: try_parsing_date(x)) # # Drop rows where dates could not be parsed # merged_df.dropna(subset=[POSITIVE_ID], inplace=True) # final_count = len(merged_df) # print("Data after Conversion END DATE column") # print(merged_df[POSITIVE_ID]) # print(f"Total entries: {original_count}") # print(f"Total after removal: {final_count}") # print("Check end entries After",merged_df[POSITIVE_ID]) # except ValueError as e: # print(f"There was an issue with the date format: {e}") # def set_dates(row): # start_date = normalize_date(row[start_date_col]) # end_date = None # if row[column] not in negative_exposures: # end_date = normalize_date(row[POSITIVE_ID]) # else: # end_date = normalize_date(row[cancellation_col]) # return pd.Series([start_date, end_date]) # try: # print("Starting date processing") # merged_df[['POLICY_START_DATE', 'POLICY_END_DATE']] = merged_df.apply(set_dates, axis=1) # except ValueError as e: # print(f"Error: {e}") def normalize_date(date_val): """ Attempts to convert the given date_val to a date object. If date_val is pd.NaT or leads to a conversion error, None is returned. """ if pd.isnull(date_val): # Check if date_val is NaT or NaN return None try: # Assuming date_val is already a datetime object, just extract the date part return date_val.date() except (ValueError, TypeError, AttributeError): # Handle cases where conversion to date fails or date_val doesn't have a date() method return None start_date_preference = request.POST.get('start_date_preference','last') first_start_date = 'first_start_date' # def set_dates(row): # """ # Sets start_date and end_date for a policy based on the row's data. # Handles cases where the input dates might be NaT by returning None. # """ # # if start_date_preference =='first' and row[column] in negative_exposures: # # start_date = normalize_date(row[first_start_date]) # # else: # # start_date = normalize_date(row[start_date_col]) # # end_date = None # # if row[column] not in negative_exposures: # # end_date = normalize_date(row[POSITIVE_ID]) # # else: # # end_date = normalize_date(row[cancellation_col]) # return pd.Series([start_date, end_date]) # Example usage: def apply_date_logic(dates, logic): """Applies a specified logic to a series of dates.""" if logic == 'min': return dates.min() elif logic == 'max': return dates.max() elif logic == 'first': return dates.iloc[0] if not dates.empty else pd.NaT elif logic == 'last': return dates.iloc[-1] if not dates.empty else pd.NaT return pd.NaT def set_dates(row,group_by_type_start, group_by_type_end): """ Assigns start_date and end_date for a policy based on the row's data. Iterates through unique_values to find a match and assigns normalized dates from the respective columns. Additionally, applies specific logic to the start and end dates. """ column_select = request.POST.get('column_select') policy_type = row[column_select] # Adjust the column name to your DataFrame's column name start_date, end_date = pd.NaT, pd.NaT for index, value in enumerate(unique_values2): if policy_type == value: start_col = start_dates[index] end_col = end_dates[index] # Assuming the row has multiple date entries in an array-like format under each column start_date_series = pd.Series(row[start_col]) if start_col in row else pd.Series() end_date_series = pd.Series(row[end_col]) if end_col in row else pd.Series() # Apply the specified logic to these series start_date = apply_date_logic(start_date_series, group_by_type_start[index]) end_date = apply_date_logic(end_date_series, group_by_type_end[index]) #break # assuming one match per row, remove if multiple matches should be considered return pd.Series([start_date, end_date]) print("Data in merged") print(merged_df.columns) print("UID COLUMN IS ",uid_col) # Sort based on UID and ENDORSEMENT_DATE merged_df.sort_values(by=[uid_col, endorsement_date_col], ascending=[True, True], inplace=True) # Drop duplicates based on UID and keep the last (latest) entry #updated_merged_df = merged_df.drop_duplicates(subset=uid_col, keep='last') # # if start_date_preference=='first': # # print("FIRST IS SELECTED************************************************************************") # # updated_merged_df.loc[:, 'first_start_date'] = merged_df.groupby(uid_col)[start_date_col].transform('first') # # try: # # original_count = len(updated_merged_df) # # print("Original count:", original_count) # # # Use the translated format for conversion, with error handling # # updated_merged_df[first_start_date] = updated_merged_df[first_start_date].apply(lambda x: try_parsing_date(x)) # # # Drop rows where dates could not be parsed # # updated_merged_df.dropna(subset=[first_start_date], inplace=True) # # final_count = len(updated_merged_df) # # print("Data after Conversion END DATE column") # # print(updated_merged_df[first_start_date]) # # print(f"Total entries: {original_count}") # # print(f"Total after removal: {final_count}") # # print("Check end entries After",updated_merged_df[first_start_date]) # # except ValueError as e: # # print(f"There was an issue with the date format: {e}") # print("CHECK 1") # if (updated_merged_df['UID'] == 'P/300/2904/19/000025-3212').any(): # subset_df = updated_merged_df.loc[updated_merged_df['UID'] == 'P/300/2904/19/000025-3212', ['first_start_date',start_date_col]] # print(subset_df) # else: # print("No rows with UID equal to 1 found.") # try: # print("Starting date processing") # # Fetch the logic types from POST request or define them here if static # group_by_type_start = request.POST.getlist('group_by_type_start_date[]') # group_by_type_end = request.POST.getlist('group_by_type_end_date[]') # # Apply the set_dates function across the DataFrame # updated_merged_df[['POLICY_START_DATE', 'POLICY_END_DATE']] = updated_merged_df.apply( # lambda row: set_dates(row, group_by_type_start, group_by_type_end), axis=1 # ) # print("Date processing completed successfully.") # except Exception as e: # print(f"Error during date processing: {e}") try: print("Starting date processing") group_by_type_start = request.POST.getlist('group_by_type_start_date[]') group_by_type_end = request.POST.getlist('group_by_type_end_date[]') print("Group by start dates:", group_by_type_start) # Debug print print("Group by end dates:", group_by_type_end) # Debug print # Applying set_dates without dropping duplicates print("Applying date settings...") merged_df[['POLICY_START_DATE', 'POLICY_END_DATE']] = merged_df.apply( lambda row: set_dates(row, group_by_type_start, group_by_type_end), axis=1 ) print("Dates applied successfully.") # drop duplicates to keep only the last entry per UID if necessary print(f"Dropping duplicates based on {uid_col}...") updated_merged_df = merged_df.drop_duplicates(subset=uid_col, keep='last') print("Date processing completed successfully.") print("Resulting DataFrame head:", updated_merged_df.head()) # Show the first few rows of the updated DataFrame except Exception as e: print(f"Error during date processing: {e}") updated_merged_df = updated_merged_df[updated_merged_df[uid_col].notna()] # 7. Apply left join on copy_dataframe uid with updated_merged_df uid final_df = pd.merge(copy_dataframe, updated_merged_df[columns_to_display], on=uid_col, how='left') duplicated_entries = copy_dataframe[copy_dataframe.duplicated(subset=uid_col, keep=False)] show_sum_insured = request.POST.get('show_sum_insured') if show_sum_insured == 'Yes': SumInsured_DF = merged_df.copy() print(SumInsured_DF.shape) sum_insured_column = request.POST.get('column_name') print(f"Received sum_insured_column from POST request: {sum_insured_column}") sum_insured_choice = request.POST.get('sum_insured_choice', 'Total') print(f"Received sum_insured_choice from POST request: {sum_insured_choice}") if sum_insured_choice == "Incremental": SumInsured_DF[sum_insured_column] = pd.to_numeric(SumInsured_DF[sum_insured_column], errors='coerce') SumInsured_DF[sum_insured_column] = SumInsured_DF[sum_insured_column].fillna(0) SumInsured_DF[sum_insured_column] = SumInsured_DF[sum_insured_column].astype(int) SumInsured_DF_grouped = SumInsured_DF.groupby(uid_col)[sum_insured_column].sum().reset_index(name=f'{sum_insured_column}_SUM') sum_insured_sum_column = f"{sum_insured_column}_SUM" SumInsured_DF = SumInsured_DF_grouped # Assigning grouped df back to SumInsured_DF for consistency print(SumInsured_DF.shape) else: print(sum_insured_column) # Sort based on ENDORESEMENT_DATE in ascending order #endorsement_date_col = request.POST.get('endoresement_date') SumInsured_DF.sort_values(by=endorsement_date_col, ascending=True, inplace=True) # Get the date_preference from POST data ('first' or 'last') # Get the date_preference from POST data ('first' or 'last') date_preference = request.POST.get('sum_insured_timeframe') print("Value is ",date_preference) if date_preference not in ['First', 'Last']: date_preference = 'last' # Default to 'last' if the value is anything else or not provided # Drop duplicates but keep either the 'first' or 'last' based on date_preference keep = 'first' if date_preference == 'First' else 'last' SumInsured_DF = SumInsured_DF.drop_duplicates(subset=uid_col, keep=keep)[[uid_col, sum_insured_column]] # Renaming the column to reflect whether it's the 'FIRST' or 'LATEST' value sum_insured_sum_column = f"{sum_insured_column}_{'FIRST' if date_preference == 'First' else 'LATEST'}" SumInsured_DF.rename(columns={sum_insured_column: sum_insured_sum_column}, inplace=True) print(SumInsured_DF.shape) duplicated_entries = SumInsured_DF[SumInsured_DF.duplicated(subset=uid_col, keep=False)] if not duplicated_entries.empty: print(f"Duplicated entries found in copy_dataframe based on {uid_col}:") print(duplicated_entries) # If you're in a web context, you may replace the print statement with a logger or return a response return HttpResponse(f"Duplicated entries found in copy_dataframe based on {uid_col}.") final_df = pd.merge(final_df, SumInsured_DF, on=uid_col, how='left') if UID_DATAFRAME.shape[0] == final_df.shape[0]: # Print message to console print("Both UID_DATAFRAME and updated_merged_df have the same number of entries.") # Perform a left join to add GROSS_PREMIUM_LC column from UID_DATAFRAME to updated_merged_df updated_merged_df = pd.merge(updated_merged_df, UID_DATAFRAME, on=uid_col, how='left', suffixes=('', '_SUM')) print("CHECK 4") if (updated_merged_df['UID'] == 'P/300/2904/19/000025-3212').any(): subset_df = updated_merged_df.loc[updated_merged_df['UID'] == 'P/300/2904/19/000025-3212', ['POLICY_START_DATE','POLICY_END_DATE']] print(subset_df) else: print("No rows with UID equal to 1 found.") print("****************************") print(updated_merged_df.head()) print("***************************8") # final_df1 = pd.merge(final_df, updated_merged_df, on=uid_col, how='left') # Columns that you want from `updated_merged_df`. This is just an example; adjust it to your needs updated_merged_df_cols = list(updated_merged_df.columns.difference(final_df.columns)) updated_merged_df_cols.append(uid_col) # Make sure to include the uid column for merging final_df = pd.merge(final_df, updated_merged_df[updated_merged_df_cols], on=uid_col, how='left') original_count = len(final_df) print("final issssssssssss") print(final_df.head()) #Data frames having null entries null_start_date_df = final_df[final_df['POLICY_START_DATE'].isnull()] null_end_date_df = final_df[final_df['POLICY_START_DATE'].isnull()] gross_null = final_df[final_df[gross_premium_col+'_SUM'].isnull()] negative_gross_df = final_df[final_df[gross_premium_col+'_SUM'] < 0] # Remove entries with a null 'POLICY_START_DATE' from the original DataFrame final_df = final_df[final_df['POLICY_START_DATE'].notnull()] final_count = len(final_df) entries_removed_due_to_null_start_date = original_count - final_count #for end final_df = final_df[final_df['POLICY_END_DATE'].notnull()] final_count = len(final_df) entries_removed_due_to_null_end_date = original_count - final_count invalid_date_df = final_df[final_df['POLICY_START_DATE'] > final_df['POLICY_END_DATE']] final_df = final_df[final_df['POLICY_START_DATE'] <= final_df['POLICY_END_DATE']] final_count = len(final_df) entries6 = original_count - final_count print("Enrties removed due to Date less than PSD PED ",entries6) print("UIDS Removed due to NUll are: ",entries1) print("Enrties removed due to Date conversion of edorsement ",entries2) print("Enrties removed due to Date conversion of Start Date ",entries3) print("Enrties removed due to Date conversion of End Date ",entries4) print("Enrties removed due to Date conversion of Cancellation ",entries5) print("Enrties removed due to Date LESS THAN PSD PED ",entries6) print("finallll2",final_df.head()) final_df['POLICY_END_DATE'] = pd.to_datetime(final_df['POLICY_END_DATE']).dt.normalize() final_df['POLICY_START_DATE'] = pd.to_datetime(final_df['POLICY_START_DATE']).dt.normalize() print("finallll3",final_df.head()) print("START DATE TYPE",final_df['POLICY_START_DATE'].dtype) print("END DATE TYPE",final_df['POLICY_END_DATE'].dtype) print("finallll",final_df.head()) final_df['UID_expsoure'] = ((final_df['POLICY_END_DATE'] - final_df['POLICY_START_DATE']).dt.days + 1) / 365.25 exposure_df = final_df[(final_df['UID_expsoure'] < 0) | (final_df['UID_expsoure'] > 1.002054)] expsoure_df_size = len(exposure_df) show_sum_insured = request.POST.get('show_sum_insured') if show_sum_insured == 'Yes': PolicyFrame = [uid_col, 'POLICY_START_DATE', 'POLICY_END_DATE', gross_premium_col+'_SUM',sum_insured_sum_column,'UID_expsoure']+custom_selected_values else: PolicyFrame = [uid_col, 'POLICY_START_DATE', 'POLICY_END_DATE', gross_premium_col+'_SUM','UID_expsoure']+custom_selected_values PolicyD = final_df[PolicyFrame] print("PolicyFrame before",PolicyD.head()) print("****************processsssssssssng rowsssssssssssssSzzzzzz*******************") new_rows = [] # Iterate over each row in the PolicyD DataFrame for _, row in PolicyD.iterrows(): # Extract the start and end dates start_date = row['POLICY_START_DATE'] end_date = row['POLICY_END_DATE'] # Get the range of years start_year = start_date.year end_year = end_date.year # Loop over each year in the range of the policy for year in range(start_year, end_year + 1): # Calculate the EffectiveStartDate and EffectiveEndDate for the current year year_start = pd.Timestamp(year, 1, 1) year_end = pd.Timestamp(year, 12, 31) # Skip years not in range if end_date < year_start or start_date > year_end: continue effective_start_date = max(start_date, year_start) effective_end_date = min(end_date, year_end) # Calculate Exposure in years Exposure = (effective_end_date - effective_start_date + pd.Timedelta(days=1)).days / 365.25 earned = (Exposure / row['UID_expsoure']) * row[gross_premium_col+'_SUM'] # Append the new row to the list new_rows.append({ 'UID': row[uid_col], 'EffectiveStartDate': effective_start_date, 'EffectiveEndDate': effective_end_date, 'Period': year, 'Exposure': Exposure, 'EarnedPremium': earned, }) print("*****************DONE*******************") # Create a new DataFrame with the split periods new_df = pd.DataFrame(new_rows) # Formatting the dates to string if needed (dd-mm-yyyy format) new_df['EffectiveStartDate'] = new_df['EffectiveStartDate'].dt.strftime('%d-%m-%Y') new_df['EffectiveEndDate'] = new_df['EffectiveEndDate'].dt.strftime('%d-%m-%Y') # Display the new DataFrame print("Desired") print(new_df.head()) # Merge PolicyD and new_df on 'UID' # Merge PolicyD and new_df on different UID column names new_df = new_df.merge(PolicyD, left_on='UID', right_on=uid_col, how='left') print("******************************new") print(new_df.head()) new_df['POLICY_START_DATE'] = new_df['POLICY_START_DATE'].dt.strftime('%d-%m-%Y') new_df['POLICY_END_DATE'] = new_df['POLICY_END_DATE'].dt.strftime('%d-%m-%Y') # for column in custom_selected_values: # if column not in new_df: # new_df[column] = column request.session['new_df'] = new_df.to_json(orient='split') # Format the dates in the desired format including the time final_df['POLICY_END_DATE'] = final_df['POLICY_END_DATE'].dt.strftime('%Y-%m-%d %H:%M:%S') # Print the result to verify #print(final_df['POLICY_END_DATE'].iloc[0]) final_df[endorsement_date_col] = final_df[endorsement_date_col].dt.strftime(translated_format) print(final_df['POLICY_START_DATE'].iloc[0]) final_df['POLICY_START_DATE'] = final_df['POLICY_START_DATE'].dt.strftime(translated_format) print(final_df['POLICY_START_DATE'].iloc[0]) print(final_df['POLICY_END_DATE'].iloc[0]) final_df['POLICY_END_DATE'] = pd.to_datetime(final_df['POLICY_END_DATE']).dt.strftime('%d-%m-%Y') print(final_df['POLICY_END_DATE'].iloc[0]) TExposure = final_df['UID_expsoure'] if show_sum_insured == 'Yes': columns_to_display = [uid_col, 'POLICY_START_DATE', 'POLICY_END_DATE', gross_premium_col+'_SUM',sum_insured_sum_column,'UID_expsoure']+custom_selected_values else: columns_to_display = [uid_col, 'POLICY_START_DATE', 'POLICY_END_DATE', gross_premium_col+'_SUM','UID_expsoure']+custom_selected_values filtered_df = final_df[columns_to_display] print("check filter",filtered_df.head()) if show_sum_insured == 'Yes': filtered_df = filtered_df.rename(columns={ uid_col: 'UID', sum_insured_sum_column: 'SumInsured', 'POLICY_START_DATE': 'PolicyStartDate', 'POLICY_END_DATE': 'PolicyEndDate', gross_premium_col+'_SUM': 'GrossPremium' }, inplace=False) else: filtered_df = filtered_df.rename(columns={ uid_col: 'UID', 'POLICY_START_DATE': 'PolicyStartDate', 'POLICY_END_DATE': 'PolicyEndDate', gross_premium_col+'_SUM': 'GrossPremium' }, inplace=False) print("Filtered") print(filtered_df.head()) uids = filtered_df['UID'] if show_sum_insured == 'Yes': sum_insured = filtered_df['SumInsured'] # else: # sum_insured = filtered_df['GrossPremium'] policy_start_dates = filtered_df['PolicyStartDate'] policy_end_dates = filtered_df['PolicyEndDate'] gross_premiums = filtered_df['GrossPremium'] UID_expsoure = filtered_df['UID_expsoure'] print(gross_premiums.head()) if (len(gross_premiums.shape) == 2): gross_premiums = gross_premiums.iloc[0] print(gross_premiums.head()) print("UID shape:", uids.shape) print("PolicyStartDate shape:", policy_start_dates.shape) print("PolicyEndDate shape:", policy_end_dates.shape) print("GrossPremium shape:", gross_premiums.shape) print("UID_exposure shape:", UID_expsoure.shape) if show_sum_insured == 'Yes': if (len(sum_insured.shape) == 2): sum_insured = sum_insured.iloc[0] print("SumInsured shape:", sum_insured.shape) PolicyDataframe = pd.DataFrame({ 'UID': uids, 'SumInsured': sum_insured, 'PolicyStartDate': policy_start_dates, 'PolicyEndDate': policy_end_dates, 'GrossPremium': gross_premiums, 'UID_expsoure':UID_expsoure, }) else: PolicyDataframe = pd.DataFrame({ 'UID': uids, 'PolicyStartDate': policy_start_dates, 'PolicyEndDate': policy_end_dates, 'GrossPremium': gross_premiums, 'UID_expsoure':UID_expsoure, }) for column in custom_selected_values: if column not in PolicyDataframe: PolicyDataframe[column] = column print(PolicyDataframe.head()) print("AFter update") # sum_insured_available = request.POST.get('sum_insured_available') # This will be either "True" or "False" # if sum_insured_available == "True": # else: # # The sum insured is not available, handle this case as needed if show_sum_insured == 'Yes': filtered_df = filtered_df.rename(columns={ sum_insured_column+'_SUM':'SumInsured', }, inplace=False) filtered_df = filtered_df.rename(columns={ gross_premium_col+'_SUM': 'GrossPremium', }, inplace=False) # Save the updated dataframe back to the session request.session['final_df'] = filtered_df.to_json(orient='split') # print(endorsement_date_col, start_date_col) sum = entries1+entries2+entries3+entries4+entries5+entries6 if entries1<=0: entries1=0 elif entries2<=0: entries2=0 elif entries3<=0: entries3=0 elif entries4<=0: entries4=0 elif entries5<=0: entries5=0 elif entries6<=0: entries6=0 elif entries_removed_due_to_null_start_date<=0: entries_removed_due_to_null_start_date=0 elif entries_removed_due_to_null_end_date<=0: entries_removed_due_to_null_end_date=0 print("negative gross",negative_gross_df.head()) print("NULL",null_uids_df.head()) print("Size is ",len(filtered_df)) print("AT THE END DF") print(null_end_df.head()) print("last",new_df.head()) print(expsoure_df_size) # return render(request, 'myapp/navbar.html', { # 'dataframe': filtered_df.head().to_html(classes='dataframe', index=False, escape=False), # 'dataframe1': new_df.head().to_html(classes='dataframe', index=False, escape=False), # 'NULL_START_UIDS': null_start_date_df.to_html(classes='dataframe',index=False, escape=False), # 'NULL_END_UIDS': null_end_date_df.to_html(classes='dataframe',index=False, escape=False), # 'show_download_link': True, # 'original_count': total_counts, # 'removed_count': sum, # 'final_count': final_count, # 'UID_count': entries1, # 'END_DATE_count': entries2, # 'START_DATECOUNT':entries3, # 'END_DATE_COUNT':entries4, # 'CANCELLATION_DATE_COUNT':entries5, # 'GREATER_COUNT':entries6, # 'START_NULL_COUNT':entries_removed_due_to_null_start_date, # 'END_NULL_COUNT':entries_removed_due_to_null_end_date, # 'Invalid_date':invalid_date_df.to_html(classes='dataframe', index=False, escape=False), # 'gross_null':gross_null.to_html(classes='dataframe', index=False, escape=False), # 'negative_gross_df':negative_gross_df.to_html(classes='dataframe', index=False, escape=False), # 'null_uids_df':null_uids_df.to_html(classes='dataframe', index=False, escape=False), # 'null_end_df':null_end_df.to_html(classes='dataframe', index=False, escape=False), # 'Null_endorsement_count':null_count_endor, # }) NULL_ENDOR_UIDS_len = len(null_end_df) NULL_END_UIDS_len= len(null_end_date_df) NULL_EXPO_UIDS_len= len(exposure_df) NULL_INVALID_UIDS_len = len(invalid_date_df) NULL_NEGATIVE_UIDS_len = len(negative_gross_df) NULL_PREMIUM_UIDS_len = len(gross_null) NULL_START_UIDS_len = len(null_start_date_df) NULL_UIDS_UIDS_len = len(null_uids_df) request.session['NULL_START_UIDS'] = null_start_date_df.to_json(orient='split') request.session['NULL_END_UIDS'] = null_end_date_df.to_json(orient='split') request.session['Invalid_date'] = invalid_date_df.to_json(orient='split') request.session['gross_null'] = gross_null.to_json(orient='split') request.session['negative_gross_df'] = negative_gross_df.to_json(orient='split') request.session['null_uids_df'] = null_uids_df.to_json(orient='split') request.session['null_end_df'] = null_end_df.to_json(orient='split') request.session['exposure_df'] = exposure_df.to_json(orient='split') results={ 'dataframe': filtered_df.head().to_html(classes='dataframe', index=False, escape=False), 'dataframe1': new_df.head().to_html(classes='dataframe', index=False, escape=False), 'NULL_START_UIDS': null_start_date_df.to_html(classes='dataframe',index=False, escape=False), 'NULL_END_UIDS': null_end_date_df.to_html(classes='dataframe',index=False, escape=False), 'show_download_link': True, 'original_count': total_counts, 'removed_count': sum, 'final_count': final_count, 'UID_count': entries1, 'END_DATE_count': entries2, 'START_DATECOUNT':entries3, 'END_DATE_COUNT':entries4, 'CANCELLATION_DATE_COUNT':entries5, 'GREATER_COUNT':entries6, 'START_NULL_COUNT':entries_removed_due_to_null_start_date, 'END_NULL_COUNT':entries_removed_due_to_null_end_date, 'Invalid_date':invalid_date_df.head().to_html(classes='dataframe', index=False, escape=False), 'gross_null':gross_null.head().to_html(classes='dataframe', index=False, escape=False), 'negative_gross_df':negative_gross_df.head().to_html(classes='dataframe', index=False, escape=False), 'null_uids_df':null_uids_df.head().to_html(classes='dataframe', index=False, escape=False), 'null_end_df':null_end_df.head().to_html(classes='dataframe', index=False, escape=False), 'Null_endorsement_count':null_count_endor, 'exposure_df':exposure_df.head().to_html(classes='dataframe', index=False, escape=False), 'NULL_ENDOR_UIDS_len': NULL_ENDOR_UIDS_len, 'NULL_END_UIDS_len': NULL_END_UIDS_len, 'NULL_EXPO_UIDS_len': NULL_EXPO_UIDS_len, 'NULL_INVALID_UIDS_len': NULL_INVALID_UIDS_len, 'NULL_NEGATIVE_UIDS_len': NULL_NEGATIVE_UIDS_len, 'NULL_PREMIUM_UIDS_len': NULL_PREMIUM_UIDS_len, 'NULL_START_UIDS_len': NULL_START_UIDS_len, 'NULL_UIDS_UIDS_len': NULL_UIDS_UIDS_len } serializable_results = convert_numpy(results) # Store the serializable results in the session serializable_results = convert_numpy(results) # Store the serializable results in the session store_results_in_session(request, 'premium_results', serializable_results) # Redirect to the display view return redirect('display_results') else: # Find out which UIDs are causing the discrepancy diff_uids = set(UID_DATAFRAME[uid_col]) - set(updated_merged_df[uid_col]) print(f"UIDs present in UID_DATAFRAME but not in updated_merged_df: {diff_uids}") diff_uids = set(updated_merged_df[uid_col]) - set(UID_DATAFRAME[uid_col]) print(f"UIDs present in updated_merged_df but not in UID_DATAFRAME: {diff_uids}") # Return a message if the entries are not the same return HttpResponse("Dataframes don't have the same number of entries.") except KeyError as e: print(e) return HttpResponse(f"Error: Column {e} not found in merged dataframe.") def combined_results(request): result1 = get_results_from_session(request, 'os_results') result2 = get_results_from_session(request, 'claims_results') result3 = get_results_from_session(request, 'premium_results') combined = { 'os_results':result1, 'claims_results':result2, 'premium_results':result3, } if result3 and 'dataframe' in result3: if result3['dataframe']: print("Premium Results df_html contains data.") else: print("Premium Results df_html is empty.") else: print("Premium Results does not exist or df_html attribute is not present.") return render(request, 'myapp/combined_results.html', combined) import numpy as np @csrf_exempt def save_negative_exposures(request): if request.method == "POST": data = json.loads(request.body) request.session['negative_exposures'] = data.get('negative_exposures', []) return JsonResponse({'status': 'success'}) def handle_selected_values(request): if request.method == 'POST': data = json.loads(request.body) request.session['selectedValues'] = data.get('selectedValues', []) # Process the selected_values as needed... return JsonResponse({'status': 'success', 'message': 'Selected values received'}) return JsonResponse({'status': 'error', 'message': 'Invalid request'}, status=400) def handle_custom_selected_values(request): if request.method == 'POST': try: data = json.loads(request.body) custom_selected_values = data.get('customSelectedValues', []) request.session['customSelectedValues'] = custom_selected_values return JsonResponse({'status': 'success', 'message': 'Custom selected values received and processed'}) except json.JSONDecodeError: return JsonResponse({'status': 'error', 'message': 'Invalid JSON'}, status=400) except Exception as e: return JsonResponse({'status': 'error', 'message': str(e)}, status=500) else: return JsonResponse({'status': 'error', 'message': 'Invalid request method'}, status=405) def checks_left_view(request): context = { 'dataframe': filtered_df.head().to_html(classes='dataframe', index=False, escape=False), } return render(request, 'myapp/checksLeft.html', context) def download_csv(request): # Load the updated dataframe from the session updated_merged_df = pd.read_json(request.session.get('final_df', '{}'), orient='split') #updated_merged_df = pd.read_json(request.session.get('updated_merged_df', '{}'), orient='split') # Convert the dataframe to CSV csv_data = updated_merged_df.to_csv(index=False) # Create a response with the CSV data response = HttpResponse(csv_data, content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="updated_merged_data.csv"' return response def claims(request): try: template = loader.get_template('myapp/claims.html') except Exception as e: return HttpResponse(f"Error loading template: {e}", status=500) return HttpResponse(template.render({}, request)) # def download_reported_claims(request): # # Retrieve the DataFrame to download from the session # df_json = request.session.get('download_reported') # if df_json: # print(df_json) # Debug: See the JSON string # try: # df = pd.read_json(df_json, orient='split') # except ValueError as e: # # Handle the error if the JSON structure is unexpected # print(e) # return HttpResponse("Error processing data to download.", status=500) # response = HttpResponse(content_type='text/csv') # response['Content-Disposition'] = 'attachment; filename="Reported_Claims.csv"' # df.to_csv(path_or_buf=response, index=False) # return response # else: # return HttpResponse("No data to download.", status=400) def download_reported_claims(request): # Retrieve the DataFrame to download from the session df_json = request.session.get('check_df') if df_json: df = pd.read_json(df_json, orient='split') response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="Reported_Claims.csv"' df.to_csv(path_or_buf=response, index=False) return response else: return HttpResponse("No data to download.", status=400) def download_processed_data(request): # Retrieve the DataFrame to download from the session df_json = request.session.get('download_df') if df_json: df = pd.read_json(df_json, orient='split') response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="processed_data.csv"' df.to_csv(path_or_buf=response, index=False) return response else: return HttpResponse("No data to download.", status=400) def download_new_df_csv(request): # Load new_df from the session new_df = pd.read_json(request.session.get('new_df', '{}'), orient='split') # Convert the dataframe to CSV csv_data = new_df.to_csv(index=False) # Create a response with the CSV data response = HttpResponse(csv_data, content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="new_data.csv"' return response import logging # Get an instance of a logger logger = logging.getLogger(__name__) from django.shortcuts import render def premium_checks(request): return render(request, 'myapp/PremiumChecks.html') def download_result_df_csv(request): # Load result_df from the session result_df = pd.read_json(request.session.get('result_df', '{}'), orient='split') # Convert the dataframe to CSV csv_data = result_df.to_csv(index=False) # Create a response with the CSV data response = HttpResponse(csv_data, content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="result_data.csv"' return response def download_checks(request): # Extract the name of the DataFrame from the request dataframe_name = request.GET.get('name') # Assuming passed as a GET parameter # Retrieve the DataFrame JSON string from the session df_json = request.session.get(dataframe_name, None) if not df_json: return HttpResponse("Requested data not found in session", status=404) # Convert JSON string back to DataFrame df = pd.read_json(df_json, orient='split') # Convert the DataFrame to CSV csv_data = df.to_csv(index=False) # Create a response with the CSV data response = HttpResponse(csv_data, content_type='text/csv') response['Content-Disposition'] = f'attachment; filename="{dataframe_name}.csv"' return response # def upload_mapping(request): # #request.session.flush() # print("*****************Loading Data*******************") # message = "" # columns = [] # file_details = [] # total_entries = 0 # is_merged = False # dataframes = [] # if request.method == 'POST': # form = CSVFileUploadForm1(request.POST, request.FILES) # if form.is_valid(): # files = request.FILES.getlist('files') # dataframes = [] # for file in files: # df = pd.read_csv(file) # num_entries = len(df) # total_entries += num_entries # Add to total entries # file_details.append({'name': file.name, 'entries': num_entries}) # dataframes.append(df) # merged_df = pd.concat(dataframes) # # Convert the merged DataFrame to JSON and store it in the session # request.session['merged_df'] = merged_df.to_json(orient='split') # message = "Files Merged Successfully" # is_merged = True # # Store the column names in the session # request.session['merged_columns'] = merged_df.columns.tolist() # columns = merged_df.columns.tolist() # else: # form = CSVFileUploadForm1() # return render(request, 'myapp/Mapping_upload.html', { # 'form': form, # 'message': message, # 'is_merged': is_merged, # 'columns': columns, # 'file_details': file_details, # Pass the file details to the template # 'total_entries': total_entries, # Pass the total entries to the template # }) from io import BytesIO from django.http import HttpResponse # Mapping as header # def download_excel(request): # import json # import pandas as pd # from io import BytesIO # from django.http import HttpResponse # # Parse JSON data from the request body # data = json.loads(request.body) # selected_columns = data.get('selected_columns', []) # # Log the selected columns to verify # print("Selected Columns:", selected_columns) # # Load DataFrame from session (make sure it's properly stored as JSON) # merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split') # print("DataFrame Head:", merged_df.head()) # # Create filtered data for selected columns # filtered_data = {column: merged_df[[column]].dropna() for column in selected_columns if column in merged_df.columns} # print("Filtered Data Keys:", filtered_data.keys()) # # Create an Excel file in-memory # output = BytesIO() # with pd.ExcelWriter(output, engine='xlsxwriter') as writer: # for column, data in filtered_data.items(): # if not data.empty: # # Create value counts with dynamic column names # value_counts = data[column].value_counts().reset_index() # value_counts.columns = [column, 'Count'] # Use the column name dynamically # # Add a new empty "Mapping" column # value_counts['Mapping'] = pd.Series([''] * len(value_counts)) # value_counts.to_excel(writer, sheet_name=column, index=False) # # Reset the position to the beginning of the stream # output.seek(0) # # Create a response # response = HttpResponse(output.getvalue(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') # response['Content-Disposition'] = 'attachment; filename="selected_data.xlsx"' # return response from django.shortcuts import render import pandas as pd def upload_mapping(request): print("*****************Loading Data*******************") message = "" columns = [] file_details = [] total_entries = 0 is_merged = False dataframes = [] # Check if data is available in session merged_df_json = request.session.get('new_df') if merged_df_json: merged_df = pd.read_json(merged_df_json, orient='split') total_entries = merged_df.shape[0] # Get the total number of entries columns = merged_df.columns.tolist() # Get the list of columns message = "Data retrieved from session." is_merged = True else: message = "No data found in session. Please upload data." return render(request, 'myapp/Mapping_upload.html', { 'message': message, 'is_merged': is_merged, 'columns': columns, 'total_entries': total_entries, # Pass the total entries to the template }) def download_excel(request): import json import pandas as pd from io import BytesIO from django.http import HttpResponse # Parse JSON data from the request body data = json.loads(request.body) selected_columns = data.get('selected_columns', []) # Log the selected columns to verify print("Selected Columns:", selected_columns) # Load DataFrame from session (make sure it's properly stored as JSON) merged_df = pd.read_json(request.session.get('new_df', '{}'), orient='split') print("DataFrame Head:", merged_df.head()) # Create filtered data for selected columns filtered_data = {column: merged_df[[column]].dropna() for column in selected_columns if column in merged_df.columns} print("Filtered Data Keys:", filtered_data.keys()) # Create an Excel file in-memory output = BytesIO() with pd.ExcelWriter(output, engine='xlsxwriter') as writer: for column, data in filtered_data.items(): if not data.empty: # Create value counts with dynamic column names value_counts = data[column].value_counts().reset_index() value_counts.columns = [column, 'Count'] # Use the column name dynamically # Add a new "Mapping{sheetName}" column dynamically named based on the sheet name mapping_column_name = f'Mapping_{column}' value_counts[mapping_column_name] = pd.Series([''] * len(value_counts)) value_counts.to_excel(writer, sheet_name=column, index=False) # Reset the position to the beginning of the stream output.seek(0) # Create a response response = HttpResponse(output.getvalue(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename="selected_data.xlsx"' return response from .forms import ExcelUploadForm, CSVFileUploadForm import pandas as pd # def MappingData(request): # excel_form = ExcelUploadForm(request.POST or None, request.FILES or None) # csv_form = CSVFileUploadForm(request.POST or None, request.FILES or None) # message = '' # if request.method == 'POST': # if excel_form.is_valid() and 'excel_file' in request.FILES: # excel_file = excel_form.cleaned_data['excel_file'] # excel_path = handle_uploaded_file(excel_file, 'excel') # # Here you could process the excel file directly or return the path to the user for confirmation # message = 'Excel file uploaded successfully! ' # if csv_form.is_valid() and 'premium_file' in request.FILES: # csv_file = csv_form.cleaned_data['premium_file'] # csv_path = handle_uploaded_file(csv_file, 'csv') # # Similarly, handle the CSV file directly here # message += 'CSV file uploaded successfully! ' # context = { # 'excel_form': excel_form, # 'csv_form': csv_form, # 'message': message # } # return render(request, 'myapp/MappingData.html', context) def MappingData(request): excel_form = ExcelUploadForm(request.POST or None, request.FILES or None) message = '' if request.method == 'POST': if excel_form.is_valid() and 'excel_file' in request.FILES: excel_file = excel_form.cleaned_data['excel_file'] excel_path = handle_uploaded_file(excel_file, 'excel') message = 'Excel file uploaded successfully!' context = { 'excel_form': excel_form, 'message': message } return render(request, 'myapp/MappingData.html', context) import os def fetch_column_data(request): excel_file = request.FILES.get('excel_file') if excel_file is None: return JsonResponse({'error': 'Excel file not provided'}, status=400) # Read premium data from session new_df_json = request.session.get('new_df') if new_df_json: premium_df = pd.read_json(new_df_json, orient='split') premium_columns = premium_df.columns.tolist() else: return JsonResponse({'error': 'Session does not contain premium data'}, status=500) try: excel = pd.ExcelFile(excel_file) excel_columns = excel.sheet_names except Exception as e: return JsonResponse({'error': f'Failed to read Excel file: {str(e)}'}, status=500) return JsonResponse({'premium_columns': premium_columns, 'excel_columns': excel_columns}) def handle_uploaded_file(file, file_type): # Define file path based on file type file_path = f'media/{file_type}_{file.name}' with open(file_path, 'wb+') as destination: for chunk in file.chunks(): destination.write(chunk) return file_path # def get_columns(request): # excel_columns = request.session.get('excel_columns', []) # premium_columns = request.session.get('premium_columns', []) # return JsonResponse({ # 'excel_columns': excel_columns, # 'premium_columns': premium_columns # }) # def process_mapping_data(request): # if request.method == 'POST': # try: # excel_file = request.FILES.get('excel_file') # csv_file = request.FILES.get('premium_file') # if not excel_file or not csv_file: # return JsonResponse({'error': 'Excel or CSV file not found in request'}, status=400) # mappings_data = request.POST.get('mappings') # if not mappings_data: # return JsonResponse({'error': 'Mappings data not provided'}, status=400) # mappings = json.loads(mappings_data) # premium_df = pd.read_csv(csv_file) # excel = pd.ExcelFile(excel_file) # results = [] # # Process all mappings and combine them into a single DataFrame for download # for mapping in mappings: # sheet_df = pd.read_excel(excel, sheet_name=mapping['sheetName']) # if 'Count' in sheet_df.columns: # sheet_df.drop('Count', axis=1, inplace=True) # result_df = pd.merge( # sheet_df, premium_df, left_on=sheet_df.columns[0], right_on=mapping['columnName'], how='left' # ) # results.append(result_df) # # Combine all results into one DataFrame if there are multiple mappings # if results: # combined_df = pd.concat(results) # # Convert DataFrame to CSV # response = HttpResponse(content_type='text/csv') # response['Content-Disposition'] = 'attachment; filename="updated_premium_file.csv"' # combined_df.to_csv(path_or_buf=response, index=False) # return response # else: # return JsonResponse({'error': 'No data processed'}, status=400) # except Exception as e: # return JsonResponse({'error': str(e)}, status=500) # else: # return JsonResponse({'error': 'Invalid HTTP method'}, status=405) # def process_mapping_data(request): # import json # import pandas as pd # from django.http import JsonResponse, HttpResponse # if request.method == 'POST': # try: # excel_file = request.FILES.get('excel_file') # csv_file = request.FILES.get('premium_file') # if not excel_file or not csv_file: # return JsonResponse({'error': 'Excel or CSV file not found in request'}, status=400) # mappings_data = request.POST.get('mappings') # if not mappings_data: # return JsonResponse({'error': 'Mappings data not provided'}, status=400) # mappings = json.loads(mappings_data) # premium_df = pd.read_csv(csv_file) # excel = pd.ExcelFile(excel_file) # results = [] # # Process all mappings and combine them into a single DataFrame for download # for mapping in mappings: # sheet_name = mapping['sheetName'] # sheet_df = pd.read_excel(excel, sheet_name=sheet_name) # mapping_column_name = f'Mapping_{sheet_name}' # dynamically construct the mapping column name # # Ensure only necessary columns are processed # if mapping_column_name in sheet_df.columns: # sheet_df = sheet_df[[sheet_name, mapping_column_name]] # # Perform the left join using the specified mapping # result_df = pd.merge( # premium_df, sheet_df, left_on=mapping['columnName'], right_on=sheet_name, how='left' # ) # # Include this merged data in results # results.append(result_df) # else: # # Log or handle the case where the expected mapping column does not exist # print(f"Expected mapping column '{mapping_column_name}' not found in sheet '{sheet_name}'.") # # Combine all results into one DataFrame if there are multiple mappings # if results: # combined_df = pd.concat(results, ignore_index=True) # # Convert DataFrame to CSV # response = HttpResponse(content_type='text/csv') # response['Content-Disposition'] = 'attachment; filename="updated_premium_file.csv"' # combined_df.to_csv(path_or_buf=response, index=False) # return response # else: # return JsonResponse({'error': 'No data processed'}, status=400) # except Exception as e: # return JsonResponse({'error': str(e)}, status=500) # else: # return JsonResponse({'error': 'Invalid HTTP method'}, status=405) # mapping_data_final = pd.concat([df for df in filtered_data.values()], axis=1) # # Serialize the final DataFrame and store it in the session # request.session['mapping_data_final'] = mapping_data_final.to_json(orient='split') # request.session.modified = True def process_mapping_data(request): import json from django.http import JsonResponse, HttpResponse if request.method == 'POST': excel_file = request.FILES.get('excel_file') if not excel_file: return JsonResponse({'error': 'Excel file not found in request'}, status=400) mappings_data = request.POST.get('mappings') if not mappings_data: return JsonResponse({'error': 'Mappings data not provided'}, status=400) # Retrieve premium DataFrame from session new_df_json = request.session.get('new_df') if new_df_json: premium_df = pd.read_json(new_df_json, orient='split') print("The premiu_df is") print(premium_df.head()) else: return JsonResponse({'error': 'Session does not contain premium data'}, status=500) try: mappings = json.loads(mappings_data) excel = pd.ExcelFile(excel_file) # Same mapping process as before for mapping in mappings: sheet_name = mapping['sheetName'] sheet_df = pd.read_excel(excel, sheet_name=sheet_name) mapping_column_name = f'Mapping_{sheet_name}' if mapping_column_name in sheet_df.columns: sheet_df = sheet_df[[sheet_name, mapping_column_name]] premium_df = pd.merge( premium_df, sheet_df, left_on=mapping['columnName'], right_on=sheet_name, how='left', suffixes=('', f'_{sheet_name}') ) request.session['mapping_data_final'] = premium_df.to_json(orient='split') response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="updated_premium_file.csv"' premium_df.to_csv(path_or_buf=response, index=False) return response except Exception as e: return JsonResponse({'error': str(e)}, status=500) else: return JsonResponse({'error': 'Invalid HTTP method'}, status=405)
Leave a Comment