Untitled
unknown
plain_text
a year ago
125 kB
16
Indexable
from django.shortcuts import render
from django.shortcuts import render, redirect
from .forms import CSVFileUploadForm1
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
from django.http import HttpResponse
from django.template import loader
from django.http import HttpResponse
from dateutil.parser import parse
import pandas as pd
import numpy as np
import json
import pyarrow.csv as pc
import pandas as pd
entries1 = 0
entries2 = 0
entries3 = 0
entries4 = 0
entries5 = 0
entries6 = 0
entries7 = 0
entries8 = 0
claim_entries1 = 0
claim_entries2 = 0
claim_entries3 = 0
claim_entries = 0
os_entries1 = 0
os_entries2 = 0
os_entries3 = 0
column = ''
def os_file_upload(request):
message = ""
columns = []
is_merged = False
file_details = [] # List to store file names and number of entries
total_entries = 0 # Variable to store the total number of entries across all files
if request.method == 'POST':
form = CSVFileUploadForm1(request.POST, request.FILES)
if form.is_valid():
files = request.FILES.getlist('files')
dataframes = []
for file in files:
df = pd.read_csv(file)
num_entries = len(df)
total_entries += num_entries # Add to total entries
file_details.append({'name': file.name, 'entries': num_entries})
dataframes.append(df)
merged_df = pd.concat(dataframes)
# Convert the merged DataFrame to JSON and store it in the session
request.session['merged_df'] = merged_df.to_json(orient='split')
message = "Files Merged Successfully"
is_merged = True
# Store the column names in the session
request.session['merged_columns'] = merged_df.columns.tolist()
columns = merged_df.columns.tolist()
else:
form = CSVFileUploadForm1()
return render(request, 'myapp/os_page.html', {
'form': form,
'message': message,
'is_merged': is_merged,
'columns': columns,
'file_details': file_details, # Pass the file details to the template
'total_entries': total_entries # Pass the total entries to the template
})
# Your utility functions
def convert_numpy(obj):
if isinstance(obj, np.generic):
return obj.item() # np.generic includes np.int64, np.float64 and more
elif isinstance(obj, dict):
return {k: convert_numpy(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_numpy(v) for v in obj]
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj
def store_results_in_session(request, key, results):
#print(f"Storing data for key: {key}") # Debug print
request.session[key] = results
def get_results_from_session(request, key):
data = request.session.get(key)
#print(f"Retrieving data for key: {key}, Data: {data}") # Debug print
return data
def clear_results_from_session(request, key):
if key in request.session:
del request.session[key]
def process_os_data(request):
print("hello world")
# Check if the 'merged_df' key exists in the session
if 'merged_df' in request.session:
# Retrieve the merged DataFrame from the session
merged_df_json = request.session['merged_df']
merged_df = pd.read_json(merged_df_json, orient='split')
print("Here is merged", merged_df.head())
else:
return HttpResponse("Merged DataFrame not found in session.", status=400)
def try_parsing_date(date_str):
"""
Attempts to parse the date string using multiple formats.
Returns the date if parsing is successful; otherwise, returns pd.NaT.
"""
for fmt in ('%d-%m-%Y', '%d/%m/%Y','%Y-%m-%d %H:%M:%S'): # Add or modify formats as needed
try:
return pd.to_datetime(date_str, format=fmt)
except (ValueError, TypeError):
continue
return pd.NaT # Return NaT if all parsing attempts fai
def translate_format(input_format):
format_translation = {
'yyyy': '%Y', # Replace 'yyyy' first to prevent conflict with 'yy'
'mm': '%m',
'dd': '%d',
'yy': '%y' # 'yy' should be replaced after 'yyyy' has been replaced
}
for key, value in format_translation.items():
input_format = input_format.replace(key, value)
return input_format
# lossDate= request.POST.get('LOSS_DATE')
# date_format = request.POST.get('date_format')
# Process the DataFrame based on the user's input
if request.method == 'POST':
print("check1")
# Determine if 'Yes' was selected for claimId availability
selected_values = request.session.get('selectedValues', [])
claimId_available = request.POST.get('claimId_available') == 'yes'
if selected_values is not None and selected_values:
uid_column = 'UID'
merged_df['UID'] = merged_df[selected_values].astype(str).agg('-'.join, axis=1)
print("Selected values",selected_values)
print("column is",merged_df[uid_column])
else:
uid_column = request.POST.get('UID')
print("UID COL IS",uid_column)
# uid_column = request.POST.get('UID')
loss_date_column = request.POST.get('LOSS_DATE')
claim_type_column = request.POST.get('CLAIM_TYPE')
claim_amount_column = request.POST.get('CLAIM_AMOUNT')
AsAtDate = request.POST.get('AsAtDate')
AsAtDate_Selection = request.POST.get('showSection')
print("AsAtDate selection is",AsAtDate)
selected_value = request.POST.get('selected_value') #selected value for AsAtDate
print("column is ",column) #Selected column for AsAtDate
print("Value is",selected_value)
if AsAtDate_Selection =='yes':
merged_df = merged_df[merged_df[column] == selected_value]
print("After AsAtDate removal is",merged_df[column])
print("2 merged", merged_df.head())
received_format = request.POST.get('date_format')
null_lossDate1 = merged_df[loss_date_column].isnull()
null_entries_df1 = merged_df[null_lossDate1]
null_lossDate_df1 = pd.DataFrame(null_entries_df1)
translated_format = translate_format(received_format)
print("Translated format:", translated_format)
merged_df[loss_date_column] = merged_df[loss_date_column].apply(lambda x: try_parsing_date(x))
print("3 merged", merged_df.head())
# merged_df[payment_column] = pd.to_datetime(
# merged_df[payment_column],format=translated_format, errors='coerce'
# )
print("4 merged", merged_df.head())
print("*****************************")
print("**********************")
print('TOTAL DF',merged_df.head())
print("UID COMING",uid_column)
print("UID",merged_df['UID'].head())
print("LossDate",merged_df[loss_date_column].head())
print("ClaimType",merged_df[claim_type_column].head())
claim_id_column = request.POST.get('CLAIMID')
if claimId_available:
No_Claim_df = merged_df.groupby([uid_column,claim_id_column,claim_type_column,loss_date_column]).agg({
claim_amount_column: 'sum',
}).reset_index()
No_Claim_df.columns = ['UID','ClaimId', 'ClaimType', 'LossDate', 'OsPaid']
else:
No_Claim_df= merged_df.groupby(['UID', loss_date_column,claim_type_column])[claim_amount_column].sum().reset_index()
No_Claim_df.columns = ['UID', 'LossDate','ClaimType', 'OsPaid']
df_display=No_Claim_df
print("converted claims data",No_Claim_df)
print("This is not_claim_df",No_Claim_df.head())
print("check4")
claims_data = request.session.get('No_Claim_df')
if claims_data:
if claimId_available:
claims_data = pd.read_json(claims_data, orient='split')
print("check 88")
print("**************************************")
print(claims_data.head())
print("**************************************")
claims_data.columns = ['UID','ClaimId', 'ClaimType', 'LossDate', 'ClaimPaid']
claims_data['LossDate'] = pd.to_datetime(claims_data['LossDate'], unit='ms')
print("check 90")
print("**************************************")
print(claims_data.head())
print("**************************************")
claims_data['UID'] = claims_data['UID'].astype(str)
No_Claim_df['UID'] = No_Claim_df['UID'].astype(str)
claims_data['ClaimId'] = claims_data['ClaimId'].astype(str)
No_Claim_df['ClaimId'] = No_Claim_df['ClaimId'].astype(str)
claims_data['LossDate'] = claims_data['LossDate'].astype(str)
No_Claim_df['LossDate'] = No_Claim_df['LossDate'].astype(str)
claims_data['ClaimType'] = claims_data['ClaimType'].astype(str)
No_Claim_df['ClaimType'] = No_Claim_df['ClaimType'].astype(str)
else:
claims_data = pd.read_json(claims_data, orient='split')
claims_data.columns = ['UID', 'LossDate','ClaimType', 'ClaimPaid']
claims_data['UID'] = claims_data['UID'].astype(str)
No_Claim_df['UID'] = No_Claim_df['UID'].astype(str)
claims_data['LossDate'] = claims_data['LossDate'].astype(str)
No_Claim_df['LossDate'] = No_Claim_df['LossDate'].astype(str)
claims_data['ClaimType'] = claims_data['ClaimType'].astype(str)
No_Claim_df['ClaimType'] = No_Claim_df['ClaimType'].astype(str)
else:
claims_data=pd.DataFrame()
print("Both data")
print(claims_data)
print(No_Claim_df)
if not claims_data.empty:
print("data of claims ",claims_data.head())
print("data of Os ",No_Claim_df.head())
#outter = pd.merge(claims_data, No_Claim_df, on=['UID','LossDate','ClaimType'], how='outer')
# if not 'ClaimType' in claims_data:
if 'ClaimType' in claims_data.columns:
if claimId_available:
outter = pd.merge(claims_data, No_Claim_df, on=['UID','ClaimId', 'ClaimType', 'LossDate'], how='outer')
else:
outter = pd.merge(claims_data, No_Claim_df, on=['UID', 'LossDate', 'ClaimType'], how='outer')
else:
No_Claim_df2= No_Claim_df.groupby(['UID', loss_date_column])[claim_amount_column].sum().reset_index()
outter = pd.merge(claims_data, No_Claim_df2, on=['UID', 'LossDate'], how='outer')
print("Outter data is ",outter.head())
outter['ClaimPaid'].fillna(0, inplace=True)
outter['OsPaid'].fillna(0, inplace=True)
outter['ClaimPaid'] = pd.to_numeric(outter['ClaimPaid'], errors='coerce')
outter['OsPaid'] = pd.to_numeric(outter['OsPaid'], errors='coerce')
outter['ReportedClaim'] = outter['ClaimPaid'] + outter['OsPaid']
negative_reported_claims = outter[outter['ReportedClaim'] <= 0]
print("Reported Claims data is ",outter.head())
else:
outter=pd.DataFrame()
outter1 = outter.copy()
check_df = outter1
if not claims_data.empty:
check_df['LossDate'] = check_df['LossDate'].astype(str)
#check_df['LossDate'] = check_df['LossDate'].dt.strftime(translated_format)
claim_amounts_df = No_Claim_df.copy()
# Convert the ClaimAmount_SUM column to numeric, setting errors to NaN
claim_amounts_df['OsPaid'] = pd.to_numeric(claim_amounts_df['OsPaid'], errors='coerce')
nan_count_before = claim_amounts_df['OsPaid'].isna().sum()
# Drop NaN values that resulted from the conversion
claim_amounts_df.dropna(inplace=True)
os_entries1=nan_count_before
# Filter the DataFrame to only contain negative values
negative_claims_df = claim_amounts_df[claim_amounts_df['OsPaid'] < 0]
# Count the number of negative ClaimAmount_SUM entries
negative_claims_count = negative_claims_df['OsPaid'].count()
print(f"The count of negative OsPaid entries is: {negative_claims_count}")
# try:
# original_count = len(merged_df)
# print(original_count)
# print(outter.shape)
# outter['LossDate'] = pd.to_datetime(
# outter['LossDate'],
# format=translated_format, errors='coerce'
# #errors='coerce' # This will replace non-parsable dates with NaT
# )
# # Drop rows where dates could not be parsed
# print("Check end entries before",outter['LossDate'])
# #merged_df.dropna(subset=[loss_date_column], inplace=True)
# final_count = len(outter)
# entries2 = original_count - final_count
# # print("Enrties removed due to Date conversion of edorsement ",entries2)
# print(f"Total entries: {original_count}")
# # print(f"Removed entries: {removed_count}")
# print(f"Total after removal: {final_count}")
# print("Check end entries After",outter['LossDate'])
# except ValueError as e:
# print(f"There was an issue with the date format: {e}")
outter['LossDate'] = outter['LossDate'].apply(lambda x: try_parsing_date(x))
original_count = len(merged_df)
print(original_count)
final_count = len(outter)
entries2 = original_count - final_count
# print("Enrties removed due to Date conversion of edorsement ",entries2)
print(f"Total entries: {original_count}")
# print(f"Removed entries: {removed_count}")
print(f"Total after removal: {final_count}")
print("Check end entries After",outter['LossDate'])
outter['Period'] = outter['LossDate'].dt.year
outter['claim_count'] = 1
# No_Claim_df['period'] = No_Claim_df['LossDate'].dt.year
# Assuming 'No_Claim_df' is your DataFrame
print("No_Claim",No_Claim_df.head())
# Store the DataFrame in the session for download
# Group by 'UID' and 'Period', and then calculate the sum of 'claim_count' and 'ClaimAmount_SUM'
# grouped_df = outter.groupby(['UID', 'Period']).agg({
# 'claim_count': 'sum',
# 'OSPaid': 'sum'
# }).reset_index()
# print("this is grouped_df",grouped_df.head())
consol = outter
# No_Claim_df.drop(['Period', 'claim_count'], axis=1, inplace=True)
outter['LossDate'] = outter['LossDate'].dt.strftime(translated_format)
# The grouped_df DataFrame now contains the sum of 'claim_count' and 'ClaimAmount_SUM' for each combination of 'UID' and 'Period'
#new_df_json = request.session.get('new_df')
new_df_json = request.session.get('mapping_data_final')
if not new_df_json: # Check if new_df_json is empty
new_df_json = request.session.get('new_df')
# print("new DF is 0",new_df.head())
if new_df_json:
new_df = pd.read_json(new_df_json, orient='split')
print("New DF head",new_df.head())
print("Consol DF head",consol.head())
consol['UID'] = consol['UID'].astype(str)
consol['Period'] = consol['Period'].astype(str)
new_df['UID'] = new_df['UID'].astype(str)
new_df['Period'] = new_df['Period'].astype(str)
else:
# Handle the case where new_df is not in the session
new_df = pd.DataFrame() # or handle this scenario appropriately
if not new_df.empty:
result_df = new_df.merge(consol, on=['UID', 'Period'], how='left') #new_df is premium and consol is claims
result_df[consol.columns] = result_df[consol.columns].fillna(0)
else:
result_df = pd.DataFrame() # or handle this scenario appropriately
# Replace 'Column1', 'Column2', etc. with actual column names from new_df
# result_df = result_df.dropna(subset=['UID', 'Period'])
# print("Successful matches:\n", result_df)
def convert_to_date(value):
try:
numeric_value = pd.to_numeric(value)
return pd.to_datetime(numeric_value, unit='ms').strftime('%d-%m-%Y')
except ValueError:
return 'Invalid Date'
# Assuming `check_df` is your DataFrame with the 'lossdate' column
# Store the DataFrame in the session for download
if not claims_data.empty:
request.session['check_df'] = check_df.to_json(orient='split')
# check_df['LossDate'] = pd.to_datetime(
# check_df['LossDate'],format=translated_format, errors='coerce'
# )
# check_df['LossDate'] = check_df['LossDate'].dt.strftime(translated_format)
#check_df['LossDate'] = check_df['LossDate'].apply(convert_to_date)
request.session['result_df'] = result_df.to_json(orient='split')
consol = result_df.head().to_html(classes='dataframe', index=False, escape=False)
request.session['download_df'] = df_display.to_json(orient='split')
#grouped_df_html = grouped_df.to_html(classes='dataframe', index=False, escape=False)
result_df_html = result_df.to_html(classes='dataframe', index=False, escape=False)
check_df1 = pd.read_json(request.session.get('check_df', '{}'), orient='split')
result_df1 = pd.read_json(request.session.get('result_df', '{}'), orient='split')
request.session['null_lossDate_df1'] = null_lossDate_df1.to_json(orient='split')
request.session['negative_reported_claims'] = negative_reported_claims.to_json(orient='split')
null_lossDate_df1_len = len(null_lossDate_df1)
negative_reported_claims_len = len(negative_reported_claims)
results = {
'df_html': df_display.head().to_html(classes='dataframe', index=False, escape=False),
'grouped_df_html': check_df.head().to_html(classes='dataframe', index=False, escape=False),
'new_df_html': consol,
'download_ready': True,
# 'check_result': check_df1.to_dict('records') if isinstance(check_df1, pd.DataFrame) else check_df1, # Convert DataFrame to list of dicts
# 'result_result': result_df1.to_dict('records') if isinstance(result_df1, pd.DataFrame) else result_df1, # Convert DataFrame to list of dicts
#'BlankPDate':null_payment.head().to_html(classes='dataframe', index=False, escape=False),
'null_lossDate_df1': null_lossDate_df1.head().to_html(classes='dataframe', index=False, escape=False),
'negative_reported_claims':negative_reported_claims.head().to_html(classes='dataframe', index=False, escape=False),
'null_lossDate_df1_len':null_lossDate_df1_len,
'negative_reported_claims_len':negative_reported_claims_len,
}
serializable_results = convert_numpy(results)
# Store the serializable results in the session
store_results_in_session(request, 'os_results', serializable_results)
# Redirect to the display view
return redirect('display_os_results')
#return render(request, 'myapp/osData.html', context)
else:
# Handle the case where method is not POST
# For example, redirect to the home page or show an error message
return HttpResponse("Invalid request.", status=400)
def display_os_results(request):
results = get_results_from_session(request, 'os_results')
if results is None:
return HttpResponse("No results available. Please go through the processing step first.")
return render(request, 'myapp/osData.html', results)
def claims_file_upload(request):
message = ""
columns = []
is_merged = False
file_details = [] # List to store file names and number of entries
total_entries = 0 # Variable to store the total number of entries across all files
if request.method == 'POST':
form = CSVFileUploadForm1(request.POST, request.FILES)
if form.is_valid():
files = request.FILES.getlist('files')
dataframes = []
for file in files:
df = pd.read_csv(file)
num_entries = len(df)
total_entries += num_entries # Add to total entries
file_details.append({'name': file.name, 'entries': num_entries})
dataframes.append(df)
merged_df = pd.concat(dataframes)
# Convert the merged DataFrame to JSON and store it in the session
request.session['merged_df'] = merged_df.to_json(orient='split')
message = "Files Merged Successfully"
is_merged = True
# Store the column names in the session
request.session['merged_columns'] = merged_df.columns.tolist()
columns = merged_df.columns.tolist()
else:
form = CSVFileUploadForm1()
return render(request, 'myapp/claims.html', {
'form': form,
'message': message,
'is_merged': is_merged,
'columns': columns,
'file_details': file_details, # Pass the file details to the template
'total_entries': total_entries # Pass the total entries to the template
})
def process_claims_data(request):
print("hello world")
# Check if the 'merged_df' key exists in the session
selected_values = request.session.get('selectedValues', [])
print("Selected values are",selected_values)
if 'merged_df' in request.session:
# Retrieve the merged DataFrame from the session
merged_df_json = request.session['merged_df']
merged_df = pd.read_json(merged_df_json, orient='split')
print("Here is merged", merged_df.head())
else:
return HttpResponse("Merged DataFrame not found in session.", status=400)
print("aelected**********",selected_values)
def translate_format(input_format):
format_translation = {
'yyyy': '%Y', # Replace 'yyyy' first to prevent conflict with 'yy'
'mm': '%m',
'dd': '%d',
'yy': '%y' # 'yy' should be replaced after 'yyyy' has been replaced
}
for key, value in format_translation.items():
input_format = input_format.replace(key, value)
return input_format
# lossDate= request.POST.get('LOSS_DATE')
# date_format = request.POST.get('date_format')
def try_parsing_date(date_str):
"""
Attempts to parse the date string using multiple formats.
Returns the date if parsing is successful; otherwise, returns pd.NaT.
"""
for fmt in ('%d-%m-%Y', '%d/%m/%Y','%Y-%m-%d %H:%M:%S'): # Add or modify formats as needed
try:
return pd.to_datetime(date_str, format=fmt)
except (ValueError, TypeError):
continue
return pd.NaT # Return NaT if all parsing attempts fail
# Process the DataFrame based on the user's input
if request.method == 'POST':
print("check1")
# Determine if 'Yes' was selected for claimId availability
total_entries=len(merged_df)
claimId_available = request.POST.get('claimId_available') == 'yes'
if selected_values is not None and selected_values:
uid_column = 'UID'
merged_df['UID'] = merged_df[selected_values].astype(str).agg('-'.join, axis=1)
print("Selected values",selected_values)
print("column is",merged_df[uid_column])
else:
uid_column = request.POST.get('UID')
print("UID COL IS",uid_column)
#uid_column = request.POST.get('UID')
loss_date_column = request.POST.get('LOSS_DATE')
claim_type_column = request.POST.get('CLAIM_TYPE')
claim_amount_column = request.POST.get('CLAIM_AMOUNT')
# print("Initial")
# print("UID",uid_column)
# print("Loss Date",loss_date_column)
# print("Claim Type",claim_type_column)
# print("Claim Amount",claim_amount_column)
if claimId_available:
print("check2")
claim_id_column1 = request.POST.get('CLAIMID')
# Group by ClaimId and ClaimType
if selected_values is not None and selected_values:
uid_column1 = 'UID'
merged_df['UID'] = merged_df[selected_values].astype(str).agg('-'.join, axis=1)
print("Selected values",selected_values)
print("column is",merged_df['UID'])
else:
uid_column1 = request.POST.get('UID1')
print("UID COL IS",uid_column1)
#uid_column1 = request.POST.get('UID1')
lossDate = request.POST.get('LOSS_DATE1')
claim_type_column1 = request.POST.get('CLAIM_TYPE1')
claim_amount_column1 = request.POST.get('CLAIM_AMOUNT1')
received_format = request.POST.get('date_format')
translated_format = translate_format(received_format)
print("Translated format:", translated_format)
print("Before")
print("LossDate column is ",merged_df[lossDate].head())
merged_df[lossDate] = merged_df[lossDate].apply(lambda x: try_parsing_date(x))
print("Data After Translating Formatting",merged_df.head())
null_lossDate = merged_df[lossDate].isnull()
null_entries_df = merged_df[null_lossDate]
null_lossDate_df = pd.DataFrame(null_entries_df)
print("After")
print("LossDate column is ",merged_df[lossDate].head())
one_to_one = merged_df.groupby(claim_id_column1).filter(lambda x: x[lossDate].nunique() > 1)
print("1 merged", merged_df.head())
print("type is ",merged_df[lossDate].dtype)
# Claim_df = merged_df.groupby([claim_id_column1, claim_type_column1]).agg({
# uid_column1: 'last',
# lossDate: 'max',
# claim_amount_column1: 'sum',
# }).reset_index()
print("UID column is ",merged_df[uid_column1].head())
print("Claim ID column is ",merged_df[claim_id_column1].head())
print("Claim Type column is ",merged_df[claim_type_column1].head())
print("LossDate column is ",merged_df[lossDate].head())
Claim_df = merged_df.groupby([uid_column1,claim_id_column1,claim_type_column1,lossDate]).agg({
claim_amount_column1: 'sum',
}).reset_index()
Claim_df.columns = ['UID','ClaimId', 'ClaimType', 'LossDate', 'ClaimPaid']
print("Data in the Claim_df ", Claim_df.head())
#Claim_df['LossDate'] = Claim_df['LossDate'].dt.strftime(translated_format)
request.session['No_Claim_df'] = Claim_df.to_json(orient='split')
claim_amounts_df = Claim_df.copy()
# Convert the ClaimAmount_SUM column to numeric, setting errors to NaN
claim_amounts_df['ClaimPaid'] = pd.to_numeric(claim_amounts_df['ClaimPaid'], errors='coerce')
nan_count_before = claim_amounts_df['ClaimPaid'].isna().sum()
# Drop NaN values that resulted from the conversion
claim_amounts_df.dropna(subset=['ClaimPaid'], inplace=True)
claim_entries1=nan_count_before
total_after = claim_amounts_df.shape[0]
# Filter the DataFrame to only contain negative values in 'ClaimPaid'
negative_claims_df = claim_amounts_df[claim_amounts_df['ClaimPaid'] < 0]
# Count the number of negative ClaimAmount_SUM entries
negative_claims_count = negative_claims_df['ClaimPaid'].count()
print(f"The count of negative ClaimAmount_SUM entries is: {negative_claims_count}")
Claim_df['LossDate'] = Claim_df['LossDate'].apply(lambda x: try_parsing_date(x))
# try:
# original_count = len(merged_df)
# print(original_count)
# print(Claim_df.shape)
# Claim_df['LossDate'] = pd.to_datetime(
# Claim_df['LossDate'],
# format=translated_format, errors='coerce'
# #errors='coerce' # This will replace non-parsable dates with NaT
# )
# # Drop rows where dates could not be parsed
# print("Check end entries before",Claim_df['LossDate'])
# #merged_df.dropna(subset=[loss_date_column], inplace=True)
# final_count = len(Claim_df)
# entries2 = original_count - final_count
# # print("Enrties removed due to Date conversion of edorsement ",entries2)
# print(f"Total entries: {original_count}")
# # print(f"Removed entries: {removed_count}")
# print(f"Total after removal: {final_count}")
# print("Check end entries After",Claim_df['LossDate'])
# except ValueError as e:
# print(f"There was an issue with the date format: {e}")
#df_display = Claim_df
original_count = len(merged_df)
print(original_count)
final_count = len(Claim_df)
entries2 = original_count - final_count
# print("Enrties removed due to Date conversion of edorsement ",entries2)
print(f"Total entries: {original_count}")
# print(f"Removed entries: {removed_count}")
print(f"Total after removal: {final_count}")
print("Check end entries After",Claim_df['LossDate'])
Claim_df['Period'] = Claim_df['LossDate'].dt.year
Claim_df['claim_count'] = 1
#Claim_df['period'] = No_Claim_df['LossDate'].dt.year
print("*****************************")
print("DF_DISPLAYYYYYYYYYY",Claim_df.head())
print("*****************************")
print("check 4")
# Store the DataFrame in the session for download
print("NaN in UID:", Claim_df['UID'].isna().sum())
print("NaN in Period:", Claim_df['Period'].isna().sum())
Claim_df['UID'] = Claim_df['UID'].astype(str)
Claim_df['Period'] = Claim_df['Period'].astype(str)
check_df = Claim_df.groupby(['UID', 'Period']).agg({
'claim_count': 'sum',
'ClaimPaid': 'sum'
}).reset_index()
consol = check_df
print("*********************************")
print("CHECK DF IS ",check_df.head())
print("*************************************")
Claim_df.drop(['Period', 'claim_count'], axis=1, inplace=True)
#No_Claim_df['LossDate'] = No_Claim_df['LossDate'].dt.strftime(translated_format)
Claim_df['LossDate'] = Claim_df['LossDate'].dt.strftime(translated_format)
df_display = Claim_df
request.session['download_df'] = df_display.to_json(orient='split')
new_df_json = request.session.get('new_df')
if new_df_json:
new_df = pd.read_json(new_df_json, orient='split')
new_df['UID'] = new_df['UID'].astype(str)
new_df['Period'] = new_df['Period'].astype(str)
else:
# Handle the case where new_df is not in the session
new_df = pd.DataFrame() # or handle this scenario appropriately
consol['UID'] = consol['UID'].astype(str)
consol['Period'] = consol['Period'].astype(str)
if not new_df.empty:
result_df = new_df.merge(consol, on=['UID', 'Period'], how='left') #new_df is premium and consol is claims
result_df[consol.columns] = result_df[consol.columns].fillna(0)
else:
result_df = consol # or handle this scenario appropriately
#request.session['download_df'] = Claim_df.to_json(orient='split')
request.session['check_df'] = check_df.to_json(orient='split')
request.session['result_df'] = result_df.to_json(orient='split')
request.session['consol_df'] = result_df.to_json(orient='split')
check_df = check_df.head().to_html(classes='dataframe', index=False, escape=False)
consol = result_df.head().to_html(classes='dataframe', index=False, escape=False)
else:
one_to_one = pd.DataFrame()
identifier_format = request.POST.get('identifier_format')
print("*******************",identifier_format)
print("2 merged", merged_df.head())
received_format = request.POST.get('date_format')
translated_format = translate_format(received_format)
print("Translated format:", translated_format)
merged_df[loss_date_column] = merged_df[loss_date_column].apply(lambda x: try_parsing_date(x))
print("3 merged", merged_df.head())
# merged_df[payment_column] = pd.to_datetime(
# merged_df[payment_column],format=translated_format, errors='coerce'
# )
print("4 merged", merged_df.head())
print("*****************************")
print("**********************")
print('TOTAL DF',merged_df.head())
print("UID COMING",uid_column)
print("UID",merged_df['UID'].head())
print("LossDate",merged_df[loss_date_column].head())
print("ClaimType",merged_df[claim_type_column].head())
null_lossDate_count = merged_df[loss_date_column].isnull().sum()
null_lossDate = merged_df[loss_date_column].isnull()
null_entries_df = merged_df[null_lossDate]
null_lossDate_df = pd.DataFrame(null_entries_df)
negative_claims_df = merged_df[merged_df[claim_amount_column] < 0]
if identifier_format == 'ULC':
No_Claim_df= merged_df.groupby(['UID', loss_date_column,claim_type_column])[claim_amount_column].sum().reset_index()
No_Claim_df.columns = ['UID', 'LossDate','ClaimType', 'ClaimPaid']
else:
No_Claim_df= merged_df.groupby(['UID', loss_date_column])[claim_amount_column].sum().reset_index()
No_Claim_df.columns = ['UID', 'LossDate', 'ClaimPaid']
request.session['No_Claim_df'] = No_Claim_df.to_json(orient='split')
print("This is not_claim_df",No_Claim_df.head())
print("check4")
claim_amounts_df = No_Claim_df.copy()
# Convert the ClaimAmount_SUM column to numeric, setting errors to NaN
claim_amounts_df['ClaimPaid'] = pd.to_numeric(claim_amounts_df['ClaimPaid'], errors='coerce')
# Drop NaN values that resulted from the conversion
claim_amounts_df.dropna(inplace=True)
nan_count_before = claim_amounts_df['ClaimPaid'].isna().sum()
# Drop NaN values that resulted from the conversion
claim_amounts_df.dropna(subset=['ClaimPaid'], inplace=True)
claim_entries1=nan_count_before
total_after = claim_amounts_df.shape[0]
# Filter the DataFrame to only contain negative values
# Count the number of negative ClaimAmount_SUM entries
negative_claims_count = negative_claims_df['ClaimPaid'].count()
print(f"The count of negative ClaimPaid entries is: {negative_claims_count}")
No_Claim_df['LossDate'] = No_Claim_df['LossDate'].apply(lambda x: try_parsing_date(x))
# try:
# original_count = len(merged_df)
# print(original_count)
# print(No_Claim_df.shape)
# No_Claim_df['LossDate'] = pd.to_datetime(
# No_Claim_df['LossDate'],
# format=translated_format, errors='coerce'
# #errors='coerce' # This will replace non-parsable dates with NaT
# )
# # Drop rows where dates could not be parsed
# print("Check end entries before",No_Claim_df['LossDate'])
# #merged_df.dropna(subset=[loss_date_column], inplace=True)
# final_count = len(No_Claim_df)
# entries2 = original_count - final_count
# # print("Enrties removed due to Date conversion of edorsement ",entries2)
# print(f"Total entries: {original_count}")
# # print(f"Removed entries: {removed_count}")
# print(f"Total after removal: {final_count}")
# print("Check end entries After",No_Claim_df['LossDate'])
# except ValueError as e:
# print(f"There was an issue with the date format: {e}")
original_count = len(merged_df)
print(original_count)
final_count = len(No_Claim_df)
entries2 = original_count - final_count
# print("Enrties removed due to Date conversion of edorsement ",entries2)
print(f"Total entries: {original_count}")
# print(f"Removed entries: {removed_count}")
print(f"Total after removal: {final_count}")
print("Check end entries After",No_Claim_df['LossDate'])
No_Claim_df['Period'] = No_Claim_df['LossDate'].dt.year
No_Claim_df['claim_count'] = 1
# No_Claim_df['period'] = No_Claim_df['LossDate'].dt.year
# Assuming 'No_Claim_df' is your DataFrame
print("No_Claim",No_Claim_df.head())
# Store the DataFrame in the session for download
# Group by 'UID' and 'Period', and then calculate the sum of 'claim_count' and 'ClaimAmount_SUM'
grouped_df = No_Claim_df.groupby(['UID', 'Period']).agg({
'claim_count': 'sum',
'ClaimPaid': 'sum'
}).reset_index()
print("this is grouped_df",grouped_df.head())
check_df = grouped_df
consol = grouped_df
No_Claim_df.drop(['Period', 'claim_count'], axis=1, inplace=True)
No_Claim_df['LossDate'] = No_Claim_df['LossDate'].dt.strftime(translated_format)
df_display = No_Claim_df
# The grouped_df DataFrame now contains the sum of 'claim_count' and 'ClaimAmount_SUM' for each combination of 'UID' and 'Period'
new_df_json = request.session.get('new_df')
# print("new DF is 0",new_df.head())
if new_df_json:
new_df = pd.read_json(new_df_json, orient='split')
consol['UID'] = consol['UID'].astype(str)
consol['Period'] = consol['Period'].astype(str)
new_df['UID'] = new_df['UID'].astype(str)
new_df['Period'] = new_df['Period'].astype(str)
else:
# Handle the case where new_df is not in the session
new_df = pd.DataFrame() # or handle this scenario appropriately
if not new_df.empty:
result_df = new_df.merge(consol, on=['UID', 'Period'], how='left') #new_df is premium and consol is claims
result_df[consol.columns] = result_df[consol.columns].fillna(0)
else:
result_df = pd.DataFrame() # or handle this scenario appropriately
print("result df s")
# Replace 'Column1', 'Column2', etc. with actual column names from new_df
# result_df = result_df.dropna(subset=['UID', 'Period'])
# print("Successful matches:\n", result_df)
# Store the DataFrame in the session for download
request.session['check_df'] = check_df.to_json(orient='split')
request.session['result_df'] = result_df.to_json(orient='split')
request.session['NullLossDate'] = null_lossDate_df.to_json(orient='split')
check_df = check_df.head().to_html(classes='dataframe', index=False, escape=False)
consol = result_df.head().to_html(classes='dataframe', index=False, escape=False)
request.session['download_df'] = df_display.to_json(orient='split')
#grouped_df_html = grouped_df.to_html(classes='dataframe', index=False, escape=False)
result_df_html = result_df.to_html(classes='dataframe', index=False, escape=False)
check_df1 = pd.read_json(request.session.get('check_df', '{}'), orient='split')
result_df1 = pd.read_json(request.session.get('result_df', '{}'), orient='split')
# results = {
# 'df_html': df_display.head().to_html(classes='dataframe', index=False, escape=False),
# 'grouped_df_html': check_df,
# 'new_df_html': consol,
# 'download_ready': True,
# 'check_result':check_df1,
# 'result_result':result_df1,
# }
NullLossDate_len = len(null_lossDate_df)
negative_claim_entries_len = len(negative_claims_df)
one_to_one_len = len(one_to_one)
request.session['NullLossDate'] = null_lossDate_df.to_json(orient='split')
request.session['negative_claim_entries'] = negative_claims_df.to_json(orient='split')
request.session['one_to_one'] = one_to_one.to_json(orient='split')
results = {
'df_html': df_display.head().to_html(classes='dataframe', index=False, escape=False),
'grouped_df_html': check_df.to_html(classes='dataframe', index=False, escape=False) if isinstance(check_df, pd.DataFrame) else check_df, # Assuming check_df is a DataFrame
'new_df_html': consol.to_html(classes='dataframe', index=False, escape=False) if isinstance(consol, pd.DataFrame) else consol, # Assuming consol is a DataFrame
'download_ready': True,
# 'check_result': check_df1.to_dict('records') if isinstance(check_df1, pd.DataFrame) else check_df1, # Convert DataFrame to list of dicts
# 'result_result': result_df1.to_dict('records') if isinstance(result_df1, pd.DataFrame) else result_df1, # Convert DataFrame to list of dicts
'NullLossDate': null_lossDate_df.head().to_html(classes='dataframe', index=False, escape=False),
'negative_claim_entries':negative_claims_df.head().to_html(classes='dataframe', index=False, escape=False),
'one_to_one':one_to_one.head().to_html(classes='dataframe', index=False, escape=False),
#'BlankPDate':null_payment.head().to_html(classes='dataframe', index=False, escape=False),
'NaN_Claim':claim_entries1,
'Total_Entries1':total_entries,
'Total_after1':total_after,
'NullLossDate_len':NullLossDate_len,
'negative_claim_entries_len':negative_claim_entries_len,
'one_to_one_len':one_to_one_len,
}
serializable_results = convert_numpy(results)
# Store the serializable results in the session
store_results_in_session(request, 'claims_results', serializable_results)
# Redirect to the display view
# Redirect to the display view
return redirect('display_claims_results')
# Render the template with the context
#return render(request, 'myapp/claimData.html', context)
else:
# Handle the case where method is not POST
# For example, redirect to the home page or show an error message
return HttpResponse("Invalid request.", status=400)
def display_claims_results(request):
results = get_results_from_session(request, 'claims_results')
if results is None:
return HttpResponse("No results available. Please go through the processing step first.")
return render(request, 'myapp/claimData.html', results)
def display_results(request):
results = get_results_from_session(request, 'premium_results')
if results is None:
return HttpResponse("No results available. Please go through the processing step first.")
return render(request, 'myapp/navbar.html', results)
import tempfile
import os
import sys
import pandas as pd
from django.shortcuts import render
# Assuming CSVFileUploadForm is defined elsewhere in your code
from django.shortcuts import render
from .forms import CSVFileUploadForm
import pandas as pd
import pyarrow.csv as pc
import pandas as pd
from django.shortcuts import render
from .forms import CSVFileUploadForm # Ensure this is correctly imported from your forms module
from .models import MergedDataModel2
def flush_session(request):
request.session.flush()
return JsonResponse({'message': 'Session has been flushed successfully!'})
def merge_and_display(request):
print("*****************Loading Data*******************")
message = ""
columns = []
file_details = []
total_entries = 0
is_merged = False
dataframes = []
if request.method == 'POST':
form = CSVFileUploadForm1(request.POST, request.FILES)
if form.is_valid():
files = request.FILES.getlist('files')
dataframes = []
for file in files:
df = pd.read_csv(file)
num_entries = len(df)
total_entries += num_entries # Add to total entries
file_details.append({'name': file.name, 'entries': num_entries})
dataframes.append(df)
merged_df = pd.concat(dataframes)
# Convert the merged DataFrame to JSON and store it in the session
request.session['merged_df'] = merged_df.to_json(orient='split')
message = "Files Merged Successfully"
is_merged = True
# Store the column names in the session
request.session['merged_columns'] = merged_df.columns.tolist()
columns = merged_df.columns.tolist()
# Save the merged DataFrame to the database
json_data = merged_df.to_json(orient='split')
MergedDataModel2.objects.create(
file_name='merged_file', # Use a suitable file name or identifier
file_path='csv_files/merged_file.csv', # Optional: store the path if needed
data=json_data
)
else:
form = CSVFileUploadForm1()
return render(request, 'myapp/upload.html', {
'form': form,
'message': message,
'is_merged': is_merged,
'columns': columns,
'file_details': file_details,
'total_entries': total_entries,
})
def fetch_unique_dates(request):
# Attempt to load the DataFrame from the session
merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split')
print(merged_df.head())
# Get the column name from the request
column = request.GET.get('column', '') #Column is name of cancellation column
if column:
try:
# Ensure the column exists in the DataFrame to avoid KeyError
if column in merged_df.columns:
unique_values = sorted(merged_df[column].dropna().unique().tolist())
return JsonResponse({'unique_values': unique_values})
else:
return JsonResponse({'error': f'Column {column} not found in DataFrame'}, status=404)
except Exception as e:
# Log the error or print to the console
print(f"Error processing column {column}: {e}")
return JsonResponse({'error': 'Internal Server Error'}, status=500)
else:
return JsonResponse({'error': 'No column specified'}, status=400)
def select_column_view(request):
merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split')
totalEntries= len(merged_df)
columns = merged_df.columns.tolist()
return render(request, 'myapp/select_column.html', {'columns': columns})
def get_columns(request):
# Load the DataFrame from the session
merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split')
# Get the column names of the DataFrame
columns = merged_df.columns.tolist()
# Return the column names as a JSON response
return JsonResponse({'columns': columns})
# def get_columns(request):
# premium_csv = pd.read_csv(request.FILES.get('premium_file'))
# excel_file = pd.ExcelFile(request.FILES.get('excel_file'))
# print("Premium CSV Columns:", premium_csv.columns.tolist()) # This will show the column names
# premium_columns = premium_csv.columns.tolist()
# excel_columns = excel_file.sheet_names
# return JsonResponse({'premium_columns': premium_columns, 'excel_columns': excel_columns})
def get_columns1(request):
# Load the DataFrame from the session
merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split')
# Assume 'premium_columns' and 'excel_columns' are predefined or calculated
premium_columns = [col for col in merged_df.columns if "premium" in col] # Example condition
excel_columns = [col for col in merged_df.columns if col not in premium_columns]
# Return the column names as a JSON response
return JsonResponse({'premium_columns': premium_columns, 'excel_columns': excel_columns})
def get_unique_values(request):
global column
# Load the dataframe from the session
merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split')
column = request.GET.get('column', '')
unique_values = merged_df[column].unique().tolist()
request.session['unique_values'] = unique_values
print(request.POST)
return JsonResponse({'unique_values': unique_values})
def get_unique_values1(request):
column_name = request.GET.get('column')
if not column_name:
return JsonResponse({'error': 'Column name is required'}, status=400)
# Assuming you have your DataFrame stored in the session or otherwise accessible
df = pd.read_json(request.session.get('merged_df', '{}'), orient='split')
if column_name not in df.columns:
return JsonResponse({'error': 'Invalid column name'}, status=400)
unique_values = df[column_name].value_counts().reset_index().values.tolist()
data = [{'value': value[0], 'count': value[1]} for value in unique_values]
return JsonResponse(data, safe=False)
def get_values(request):
global column
# Load the dataframe from the session
merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split')
column = request.GET.get('column', '')
values = merged_df[column].tolist()
print(request.POST)
return JsonResponse({'values': values})
def process_data(request):
def try_parsing_date(date_str):
"""
Attempts to parse the date string using multiple formats.
Returns the date if parsing is successful; otherwise, returns pd.NaT.
"""
for fmt in ('%d-%m-%Y', '%d/%m/%Y','%Y-%m-%d %H:%M:%S'): # Add or modify formats as needed
try:
return pd.to_datetime(date_str, format=fmt)
except (ValueError, TypeError):
continue
return pd.NaT # Return NaT if all parsing attempts fail
print("entered in process")
selected_values = request.session.get('selectedValues', [])
print("Selected values are",selected_values)
import pandas as pd
global entries1, entries2, entries3, entries4, entries5, entries6,filtered_df
try:
# Load the dataframe from the session
merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split')
if selected_values is not None and selected_values:
uid_col = 'UID'
merged_df['UID'] = merged_df[selected_values].astype(str).agg('-'.join, axis=1)
print("Selected values",selected_values)
print("column is",merged_df[uid_col])
print("In condition")
else:
uid_col = request.POST.get('uid')
print("UID COL IS",uid_col)
date_format = request.POST.get('date_format')
print("Format is",date_format)
total_counts = len(merged_df)
unique_values2 = request.session.get('unique_values', [])
print("***********************************************************")
print("Unique values are",unique_values2)
start_dates = request.POST.getlist('start_date[]')
end_dates = request.POST.getlist('end_date[]')
#convert start and end date to date time
for column_name in start_dates:
if column_name in merged_df.columns:
merged_df[column_name] = merged_df[column_name].apply(lambda x: try_parsing_date(x))
print(f"After conversion, dtype of {column_name}: {merged_df[column_name].dtype}")
print("END DATE COLUMNS BELOW")
# Process each column listed in end_dates
for column_name in end_dates:
if column_name in merged_df.columns:
merged_df[column_name] = merged_df[column_name].apply(lambda x: try_parsing_date(x))
print(f"After conversion, dtype of {column_name}: {merged_df[column_name].dtype}")
group_by_types = request.POST.getlist('group_by_type[]')
# group_by_type_start_date= request.POST.getlist('group_by_type_start_date[]')
# group_by_type_end_date= request.POST.getlist('group_by_type_end_date[]')
print("Start Dates:", start_dates)
print("End Dates:", end_dates)
print("Group By Types:", group_by_types)
print("Counts:", len(unique_values2), len(start_dates), len(end_dates), len(group_by_types))
print("***************************************************************")
# 1. Make a copy of merged_df
# 2. Sort data in ascending on the basis of endorsement_date_col and uid_col
#uid_col = request.POST.get('uid')
print("UID COLUMN 1",uid_col)
original_count = len(merged_df)
null_uids_df = merged_df[merged_df[uid_col].isnull()]
merged_df.dropna(subset=[uid_col], inplace=True)
final_count = len(merged_df)
entries1 = original_count - final_count
print("UIDS Removed due to NUll are: ",entries1)
endorsement_date_col = request.POST.get('endoresement_date')
null_end_df = merged_df[merged_df[endorsement_date_col].isnull()]
null_count_endor = merged_df[endorsement_date_col].isnull().sum()
# def translate_format(input_format):
# format_translation = {
# 'yyyy': '%Y', # Replace 'yyyy' first to prevent conflict with 'yy'
# 'mm': '%m',
# 'dd': '%d',
# 'yy': '%y' # 'yy' should be replaced after 'yyyy' has been replaced
# }
# for key, value in format_translation.items():
# input_format = input_format.replace(key, value)
# return input_format
# # Assuming 'request' is your HttpRequest object from Django
# received_format = request.POST.get('date_format')
# translated_format = translate_format(received_format)
# print("Translated format:", translated_format)
# print("Data before Conversion")
# print(merged_df[endorsement_date_col])
# merged_df[endorsement_date_col] = pd.to_datetime(merged_df[endorsement_date_col],format='%d-%m-%Y')
# try:
# original_count = len(merged_df)
# print(original_count)
# print(merged_df.shape)
# merged_df[endorsement_date_col] = pd.to_datetime(
# merged_df[endorsement_date_col],
# format=translated_format,
# #errors='coerce', # This will replace non-parsable dates with NaT
# )
# # Drop rows where dates could not be parsed
# print("Check end entries before",merged_df[endorsement_date_col])
# merged_df.dropna(subset=[endorsement_date_col], inplace=True)
# final_count = len(merged_df)
# entries2 = original_count - final_count
# # print("Enrties removed due to Date conversion of edorsement ",entries2)
# print(f"Total entries: {original_count}")
# # print(f"Removed entries: {removed_count}")
# print(f"Total after removal: {final_count}")
# print("Check end entries After",merged_df[endorsement_date_col])
# print("*******************Converted *********************")
# except ValueError as e:
# print(f"There was an issue with the date format: {e}")
def translate_format(input_format):
# Improved translation to account for different separators like '-' and '/'
format_translation = {
'yyyy': '%Y', # Replace 'yyyy' first to prevent conflict with 'yy'
'yy': '%y', # 'yy' should be replaced after 'yyyy' has been replaced
'mm': '%m',
'dd': '%d'
}
for key, value in format_translation.items():
input_format = input_format.replace(key, value)
# Detect and handle separators in the input format dynamically
for sep in ['-', '/', '.', ' ']:
if sep in input_format:
return input_format.replace(sep, '-')
return input_format
# Simulate getting the format from a request
received_format = request.POST.get('date_format')
translated_format = translate_format(received_format)
# Convert dates using the translated format, handling errors
try:
original_count = len(merged_df)
print("Original count:", original_count)
# Apply 'try_parsing_date' to each value in the column
merged_df[endorsement_date_col] = merged_df[endorsement_date_col].apply(lambda x: try_parsing_date(x))
# Optionally, you can still drop rows where dates could not be parsed and are NaT
# If you prefer to keep these rows, you can comment out or remove the line below
merged_df.dropna(subset=[endorsement_date_col], inplace=True)
final_count = len(merged_df)
print("Data after Conversion Endorsement Date")
print(merged_df[endorsement_date_col])
print(f"Total entries: {original_count}")
print(f"Total after removal: {final_count}")
print("Check end entries After",merged_df[endorsement_date_col])
except Exception as e: # Catching a more general exception
print(f"There was an issue with the date parsing: {e}")
endor_datatype = merged_df[endorsement_date_col].dtype
print("type of edorsement column ",endor_datatype)
# merged_df[endorsement_date_col] = merged_df[endorsement_date_col].dt.strftime(date_format)
copy_dataframe = merged_df.copy()
print("UID COLUMN 2",uid_col)
copy_dataframe.sort_values(by=[uid_col, endorsement_date_col], ascending=[True, True], inplace=True)
print("UID COLUMN 3",uid_col)
endor_datatype = copy_dataframe[endorsement_date_col].dtype
print(f"The datatype of the '{endorsement_date_col}' column is: {endor_datatype}")
radio_choice = request.POST.get('radio_button_choice', 'Last') # Default to 'Last' if no choice given
selectedPreference = request.POST.get('selectedPreference')
print("GOT THE SELECTED PREFERENCE",selectedPreference)
# Handling duplicates in copy_dataframe
if selectedPreference == "First":
copy_dataframe = copy_dataframe.drop_duplicates(subset=uid_col, keep='first')
else: # If choice is 'Last' or any other unexpected value
copy_dataframe = copy_dataframe.drop_duplicates(subset=uid_col, keep='last')
# 6. Only include uid_col, endorsement_date_col, other columns selected using additional
other_col = request.POST.getlist('other')
custom_selected_values = request.session.get('customSelectedValues', [])
print("***********************************")
print(custom_selected_values)
print("***********************************")
columns_to_display = [uid_col, endorsement_date_col] + custom_selected_values
print("***********************************")
print(columns_to_display)
print("***********************************")
negative_exposures = request.session.get('negative_exposures', [])
# uid_col = request.POST.getlist('uid')[0]
gross_premium_col = request.POST.getlist('gross_premium')[0]
# uid_col = request.POST.get('uid')
gross_premium_col = request.POST.get('gross_premium')
print("actual column of gross",gross_premium_col)
merged_df[gross_premium_col] = pd.to_numeric(merged_df[gross_premium_col], errors='coerce')
merged_df[gross_premium_col] = merged_df[gross_premium_col].fillna(0)
merged_df[gross_premium_col] = merged_df[gross_premium_col].astype(int)
print("*****************Converted grois to numeric= type*******************")
# Create the UID_DATAFRAME
UID_DATAFRAME = merged_df.groupby(uid_col)[gross_premium_col].sum().reset_index()
# endorsement_date_col = request.POST.get('endoresement_date')
# start_date_col = request.POST.get('start_date')
# try:
# original_count = len(merged_df)
# print("Original count:", original_count)
# # Use the translated format for conversion, with error handling
# merged_df[start_date_col] = merged_df[start_date_col].apply(lambda x: try_parsing_date(x))
# # Drop rows where dates could not be parsed
# merged_df.dropna(subset=[start_date_col], inplace=True)
# final_count = len(merged_df)
# print("Data after Conversion START DATE COLUMN")
# print(merged_df[start_date_col])
# print(f"Total entries: {original_count}")
# print(f"Total after removal: {final_count}")
# print("Check end entries After",merged_df[start_date_col])
# except ValueError as e:
# print(f"There was an issue with the date format: {e}")
print("Papu2")
cancellation_col = request.POST.get('cancellation')
# try:
# original_count = len(merged_df)
# print("Original count:", original_count)
# # Use the translated format for conversion, with error handling
# merged_df[cancellation_col] = merged_df[cancellation_col].apply(lambda x: try_parsing_date(x))
# # Drop rows where dates could not be parsed
# merged_df.dropna(subset=[cancellation_col], inplace=True)
# final_count = len(merged_df)
# print("Data after Conversion Cancellation column")
# print(merged_df[cancellation_col])
# print(f"Total entries: {original_count}")
# print(f"Total after removal: {final_count}")
# print("Check end entries After",merged_df[cancellation_col])
# except ValueError as e:
# print(f"There was an issue with the date format: {e}")
other_col = request.POST.getlist('other')
print("names of cols")
print(merged_df.columns)
print("*****************Converted All colums*******************")
# POSITIVE_ID = request.POST.get('POSITIVE_ID')
# try:
# original_count = len(merged_df)
# print("Original count:", original_count)
# # Use the translated format for conversion, with error handling
# merged_df[POSITIVE_ID] = merged_df[POSITIVE_ID].apply(lambda x: try_parsing_date(x))
# # Drop rows where dates could not be parsed
# merged_df.dropna(subset=[POSITIVE_ID], inplace=True)
# final_count = len(merged_df)
# print("Data after Conversion END DATE column")
# print(merged_df[POSITIVE_ID])
# print(f"Total entries: {original_count}")
# print(f"Total after removal: {final_count}")
# print("Check end entries After",merged_df[POSITIVE_ID])
# except ValueError as e:
# print(f"There was an issue with the date format: {e}")
# def set_dates(row):
# start_date = normalize_date(row[start_date_col])
# end_date = None
# if row[column] not in negative_exposures:
# end_date = normalize_date(row[POSITIVE_ID])
# else:
# end_date = normalize_date(row[cancellation_col])
# return pd.Series([start_date, end_date])
# try:
# print("Starting date processing")
# merged_df[['POLICY_START_DATE', 'POLICY_END_DATE']] = merged_df.apply(set_dates, axis=1)
# except ValueError as e:
# print(f"Error: {e}")
def normalize_date(date_val):
"""
Attempts to convert the given date_val to a date object.
If date_val is pd.NaT or leads to a conversion error, None is returned.
"""
if pd.isnull(date_val): # Check if date_val is NaT or NaN
return None
try:
# Assuming date_val is already a datetime object, just extract the date part
return date_val.date()
except (ValueError, TypeError, AttributeError):
# Handle cases where conversion to date fails or date_val doesn't have a date() method
return None
start_date_preference = request.POST.get('start_date_preference','last')
first_start_date = 'first_start_date'
# def set_dates(row):
# """
# Sets start_date and end_date for a policy based on the row's data.
# Handles cases where the input dates might be NaT by returning None.
# """
# # if start_date_preference =='first' and row[column] in negative_exposures:
# # start_date = normalize_date(row[first_start_date])
# # else:
# # start_date = normalize_date(row[start_date_col])
# # end_date = None
# # if row[column] not in negative_exposures:
# # end_date = normalize_date(row[POSITIVE_ID])
# # else:
# # end_date = normalize_date(row[cancellation_col])
# return pd.Series([start_date, end_date])
# Example usage:
def apply_date_logic(dates, logic):
"""Applies a specified logic to a series of dates."""
if logic == 'min':
return dates.min()
elif logic == 'max':
return dates.max()
elif logic == 'first':
return dates.iloc[0] if not dates.empty else pd.NaT
elif logic == 'last':
return dates.iloc[-1] if not dates.empty else pd.NaT
return pd.NaT
def set_dates(row,group_by_type_start, group_by_type_end):
"""
Assigns start_date and end_date for a policy based on the row's data.
Iterates through unique_values to find a match and assigns normalized dates from the respective columns.
Additionally, applies specific logic to the start and end dates.
"""
column_select = request.POST.get('column_select')
policy_type = row[column_select] # Adjust the column name to your DataFrame's column name
start_date, end_date = pd.NaT, pd.NaT
for index, value in enumerate(unique_values2):
if policy_type == value:
start_col = start_dates[index]
end_col = end_dates[index]
# Assuming the row has multiple date entries in an array-like format under each column
start_date_series = pd.Series(row[start_col]) if start_col in row else pd.Series()
end_date_series = pd.Series(row[end_col]) if end_col in row else pd.Series()
# Apply the specified logic to these series
start_date = apply_date_logic(start_date_series, group_by_type_start[index])
end_date = apply_date_logic(end_date_series, group_by_type_end[index])
#break # assuming one match per row, remove if multiple matches should be considered
return pd.Series([start_date, end_date])
print("Data in merged")
print(merged_df.columns)
print("UID COLUMN IS ",uid_col)
# Sort based on UID and ENDORSEMENT_DATE
merged_df.sort_values(by=[uid_col, endorsement_date_col], ascending=[True, True], inplace=True)
# Drop duplicates based on UID and keep the last (latest) entry
#updated_merged_df = merged_df.drop_duplicates(subset=uid_col, keep='last')
# # if start_date_preference=='first':
# # print("FIRST IS SELECTED************************************************************************")
# # updated_merged_df.loc[:, 'first_start_date'] = merged_df.groupby(uid_col)[start_date_col].transform('first')
# # try:
# # original_count = len(updated_merged_df)
# # print("Original count:", original_count)
# # # Use the translated format for conversion, with error handling
# # updated_merged_df[first_start_date] = updated_merged_df[first_start_date].apply(lambda x: try_parsing_date(x))
# # # Drop rows where dates could not be parsed
# # updated_merged_df.dropna(subset=[first_start_date], inplace=True)
# # final_count = len(updated_merged_df)
# # print("Data after Conversion END DATE column")
# # print(updated_merged_df[first_start_date])
# # print(f"Total entries: {original_count}")
# # print(f"Total after removal: {final_count}")
# # print("Check end entries After",updated_merged_df[first_start_date])
# # except ValueError as e:
# # print(f"There was an issue with the date format: {e}")
# print("CHECK 1")
# if (updated_merged_df['UID'] == 'P/300/2904/19/000025-3212').any():
# subset_df = updated_merged_df.loc[updated_merged_df['UID'] == 'P/300/2904/19/000025-3212', ['first_start_date',start_date_col]]
# print(subset_df)
# else:
# print("No rows with UID equal to 1 found.")
# try:
# print("Starting date processing")
# # Fetch the logic types from POST request or define them here if static
# group_by_type_start = request.POST.getlist('group_by_type_start_date[]')
# group_by_type_end = request.POST.getlist('group_by_type_end_date[]')
# # Apply the set_dates function across the DataFrame
# updated_merged_df[['POLICY_START_DATE', 'POLICY_END_DATE']] = updated_merged_df.apply(
# lambda row: set_dates(row, group_by_type_start, group_by_type_end), axis=1
# )
# print("Date processing completed successfully.")
# except Exception as e:
# print(f"Error during date processing: {e}")
try:
print("Starting date processing")
group_by_type_start = request.POST.getlist('group_by_type_start_date[]')
group_by_type_end = request.POST.getlist('group_by_type_end_date[]')
print("Group by start dates:", group_by_type_start) # Debug print
print("Group by end dates:", group_by_type_end) # Debug print
# Applying set_dates without dropping duplicates
print("Applying date settings...")
merged_df[['POLICY_START_DATE', 'POLICY_END_DATE']] = merged_df.apply(
lambda row: set_dates(row, group_by_type_start, group_by_type_end), axis=1
)
print("Dates applied successfully.")
# drop duplicates to keep only the last entry per UID if necessary
print(f"Dropping duplicates based on {uid_col}...")
updated_merged_df = merged_df.drop_duplicates(subset=uid_col, keep='last')
print("Date processing completed successfully.")
print("Resulting DataFrame head:", updated_merged_df.head()) # Show the first few rows of the updated DataFrame
except Exception as e:
print(f"Error during date processing: {e}")
updated_merged_df = updated_merged_df[updated_merged_df[uid_col].notna()]
# 7. Apply left join on copy_dataframe uid with updated_merged_df uid
final_df = pd.merge(copy_dataframe, updated_merged_df[columns_to_display], on=uid_col, how='left')
duplicated_entries = copy_dataframe[copy_dataframe.duplicated(subset=uid_col, keep=False)]
show_sum_insured = request.POST.get('show_sum_insured')
if show_sum_insured == 'Yes':
SumInsured_DF = merged_df.copy()
print(SumInsured_DF.shape)
sum_insured_column = request.POST.get('column_name')
print(f"Received sum_insured_column from POST request: {sum_insured_column}")
sum_insured_choice = request.POST.get('sum_insured_choice', 'Total')
print(f"Received sum_insured_choice from POST request: {sum_insured_choice}")
if sum_insured_choice == "Incremental":
SumInsured_DF[sum_insured_column] = pd.to_numeric(SumInsured_DF[sum_insured_column], errors='coerce')
SumInsured_DF[sum_insured_column] = SumInsured_DF[sum_insured_column].fillna(0)
SumInsured_DF[sum_insured_column] = SumInsured_DF[sum_insured_column].astype(int)
SumInsured_DF_grouped = SumInsured_DF.groupby(uid_col)[sum_insured_column].sum().reset_index(name=f'{sum_insured_column}_SUM')
sum_insured_sum_column = f"{sum_insured_column}_SUM"
SumInsured_DF = SumInsured_DF_grouped # Assigning grouped df back to SumInsured_DF for consistency
print(SumInsured_DF.shape)
else:
print(sum_insured_column)
# Sort based on ENDORESEMENT_DATE in ascending order
#endorsement_date_col = request.POST.get('endoresement_date')
SumInsured_DF.sort_values(by=endorsement_date_col, ascending=True, inplace=True)
# Get the date_preference from POST data ('first' or 'last')
# Get the date_preference from POST data ('first' or 'last')
date_preference = request.POST.get('sum_insured_timeframe')
print("Value is ",date_preference)
if date_preference not in ['First', 'Last']:
date_preference = 'last' # Default to 'last' if the value is anything else or not provided
# Drop duplicates but keep either the 'first' or 'last' based on date_preference
keep = 'first' if date_preference == 'First' else 'last'
SumInsured_DF = SumInsured_DF.drop_duplicates(subset=uid_col, keep=keep)[[uid_col, sum_insured_column]]
# Renaming the column to reflect whether it's the 'FIRST' or 'LATEST' value
sum_insured_sum_column = f"{sum_insured_column}_{'FIRST' if date_preference == 'First' else 'LATEST'}"
SumInsured_DF.rename(columns={sum_insured_column: sum_insured_sum_column}, inplace=True)
print(SumInsured_DF.shape)
duplicated_entries = SumInsured_DF[SumInsured_DF.duplicated(subset=uid_col, keep=False)]
if not duplicated_entries.empty:
print(f"Duplicated entries found in copy_dataframe based on {uid_col}:")
print(duplicated_entries)
# If you're in a web context, you may replace the print statement with a logger or return a response
return HttpResponse(f"Duplicated entries found in copy_dataframe based on {uid_col}.")
final_df = pd.merge(final_df, SumInsured_DF, on=uid_col, how='left')
if UID_DATAFRAME.shape[0] == final_df.shape[0]:
# Print message to console
print("Both UID_DATAFRAME and updated_merged_df have the same number of entries.")
# Perform a left join to add GROSS_PREMIUM_LC column from UID_DATAFRAME to updated_merged_df
updated_merged_df = pd.merge(updated_merged_df, UID_DATAFRAME, on=uid_col, how='left', suffixes=('', '_SUM'))
print("CHECK 4")
if (updated_merged_df['UID'] == 'P/300/2904/19/000025-3212').any():
subset_df = updated_merged_df.loc[updated_merged_df['UID'] == 'P/300/2904/19/000025-3212', ['POLICY_START_DATE','POLICY_END_DATE']]
print(subset_df)
else:
print("No rows with UID equal to 1 found.")
print("****************************")
print(updated_merged_df.head())
print("***************************8")
# final_df1 = pd.merge(final_df, updated_merged_df, on=uid_col, how='left')
# Columns that you want from `updated_merged_df`. This is just an example; adjust it to your needs
updated_merged_df_cols = list(updated_merged_df.columns.difference(final_df.columns))
updated_merged_df_cols.append(uid_col) # Make sure to include the uid column for merging
final_df = pd.merge(final_df, updated_merged_df[updated_merged_df_cols], on=uid_col, how='left')
original_count = len(final_df)
print("final issssssssssss")
print(final_df.head())
#Data frames having null entries
null_start_date_df = final_df[final_df['POLICY_START_DATE'].isnull()]
null_end_date_df = final_df[final_df['POLICY_START_DATE'].isnull()]
gross_null = final_df[final_df[gross_premium_col+'_SUM'].isnull()]
negative_gross_df = final_df[final_df[gross_premium_col+'_SUM'] < 0]
# Remove entries with a null 'POLICY_START_DATE' from the original DataFrame
final_df = final_df[final_df['POLICY_START_DATE'].notnull()]
final_count = len(final_df)
entries_removed_due_to_null_start_date = original_count - final_count
#for end
final_df = final_df[final_df['POLICY_END_DATE'].notnull()]
final_count = len(final_df)
entries_removed_due_to_null_end_date = original_count - final_count
invalid_date_df = final_df[final_df['POLICY_START_DATE'] > final_df['POLICY_END_DATE']]
final_df = final_df[final_df['POLICY_START_DATE'] <= final_df['POLICY_END_DATE']]
final_count = len(final_df)
entries6 = original_count - final_count
print("Enrties removed due to Date less than PSD PED ",entries6)
print("UIDS Removed due to NUll are: ",entries1)
print("Enrties removed due to Date conversion of edorsement ",entries2)
print("Enrties removed due to Date conversion of Start Date ",entries3)
print("Enrties removed due to Date conversion of End Date ",entries4)
print("Enrties removed due to Date conversion of Cancellation ",entries5)
print("Enrties removed due to Date LESS THAN PSD PED ",entries6)
print("finallll2",final_df.head())
final_df['POLICY_END_DATE'] = pd.to_datetime(final_df['POLICY_END_DATE']).dt.normalize()
final_df['POLICY_START_DATE'] = pd.to_datetime(final_df['POLICY_START_DATE']).dt.normalize()
print("finallll3",final_df.head())
print("START DATE TYPE",final_df['POLICY_START_DATE'].dtype)
print("END DATE TYPE",final_df['POLICY_END_DATE'].dtype)
print("finallll",final_df.head())
final_df['UID_expsoure'] = ((final_df['POLICY_END_DATE'] - final_df['POLICY_START_DATE']).dt.days + 1) / 365.25
exposure_df = final_df[(final_df['UID_expsoure'] < 0) | (final_df['UID_expsoure'] > 1.002054)]
expsoure_df_size = len(exposure_df)
show_sum_insured = request.POST.get('show_sum_insured')
if show_sum_insured == 'Yes':
PolicyFrame = [uid_col, 'POLICY_START_DATE', 'POLICY_END_DATE', gross_premium_col+'_SUM',sum_insured_sum_column,'UID_expsoure']+custom_selected_values
else:
PolicyFrame = [uid_col, 'POLICY_START_DATE', 'POLICY_END_DATE', gross_premium_col+'_SUM','UID_expsoure']+custom_selected_values
PolicyD = final_df[PolicyFrame]
print("PolicyFrame before",PolicyD.head())
print("****************processsssssssssng rowsssssssssssssSzzzzzz*******************")
new_rows = []
# Iterate over each row in the PolicyD DataFrame
for _, row in PolicyD.iterrows():
# Extract the start and end dates
start_date = row['POLICY_START_DATE']
end_date = row['POLICY_END_DATE']
# Get the range of years
start_year = start_date.year
end_year = end_date.year
# Loop over each year in the range of the policy
for year in range(start_year, end_year + 1):
# Calculate the EffectiveStartDate and EffectiveEndDate for the current year
year_start = pd.Timestamp(year, 1, 1)
year_end = pd.Timestamp(year, 12, 31)
# Skip years not in range
if end_date < year_start or start_date > year_end:
continue
effective_start_date = max(start_date, year_start)
effective_end_date = min(end_date, year_end)
# Calculate Exposure in years
Exposure = (effective_end_date - effective_start_date + pd.Timedelta(days=1)).days / 365.25
earned = (Exposure / row['UID_expsoure']) * row[gross_premium_col+'_SUM']
# Append the new row to the list
new_rows.append({
'UID': row[uid_col],
'EffectiveStartDate': effective_start_date,
'EffectiveEndDate': effective_end_date,
'Period': year,
'Exposure': Exposure,
'EarnedPremium': earned,
})
print("*****************DONE*******************")
# Create a new DataFrame with the split periods
new_df = pd.DataFrame(new_rows)
# Formatting the dates to string if needed (dd-mm-yyyy format)
new_df['EffectiveStartDate'] = new_df['EffectiveStartDate'].dt.strftime('%d-%m-%Y')
new_df['EffectiveEndDate'] = new_df['EffectiveEndDate'].dt.strftime('%d-%m-%Y')
# Display the new DataFrame
print("Desired")
print(new_df.head())
# Merge PolicyD and new_df on 'UID'
# Merge PolicyD and new_df on different UID column names
new_df = new_df.merge(PolicyD, left_on='UID', right_on=uid_col, how='left')
print("******************************new")
print(new_df.head())
new_df['POLICY_START_DATE'] = new_df['POLICY_START_DATE'].dt.strftime('%d-%m-%Y')
new_df['POLICY_END_DATE'] = new_df['POLICY_END_DATE'].dt.strftime('%d-%m-%Y')
# for column in custom_selected_values:
# if column not in new_df:
# new_df[column] = column
request.session['new_df'] = new_df.to_json(orient='split')
# Format the dates in the desired format including the time
final_df['POLICY_END_DATE'] = final_df['POLICY_END_DATE'].dt.strftime('%Y-%m-%d %H:%M:%S')
# Print the result to verify
#print(final_df['POLICY_END_DATE'].iloc[0])
final_df[endorsement_date_col] = final_df[endorsement_date_col].dt.strftime(translated_format)
print(final_df['POLICY_START_DATE'].iloc[0])
final_df['POLICY_START_DATE'] = final_df['POLICY_START_DATE'].dt.strftime(translated_format)
print(final_df['POLICY_START_DATE'].iloc[0])
print(final_df['POLICY_END_DATE'].iloc[0])
final_df['POLICY_END_DATE'] = pd.to_datetime(final_df['POLICY_END_DATE']).dt.strftime('%d-%m-%Y')
print(final_df['POLICY_END_DATE'].iloc[0])
TExposure = final_df['UID_expsoure']
if show_sum_insured == 'Yes':
columns_to_display = [uid_col, 'POLICY_START_DATE', 'POLICY_END_DATE', gross_premium_col+'_SUM',sum_insured_sum_column,'UID_expsoure']+custom_selected_values
else:
columns_to_display = [uid_col, 'POLICY_START_DATE', 'POLICY_END_DATE', gross_premium_col+'_SUM','UID_expsoure']+custom_selected_values
filtered_df = final_df[columns_to_display]
print("check filter",filtered_df.head())
if show_sum_insured == 'Yes':
filtered_df = filtered_df.rename(columns={
uid_col: 'UID',
sum_insured_sum_column: 'SumInsured',
'POLICY_START_DATE': 'PolicyStartDate',
'POLICY_END_DATE': 'PolicyEndDate',
gross_premium_col+'_SUM': 'GrossPremium'
}, inplace=False)
else:
filtered_df = filtered_df.rename(columns={
uid_col: 'UID',
'POLICY_START_DATE': 'PolicyStartDate',
'POLICY_END_DATE': 'PolicyEndDate',
gross_premium_col+'_SUM': 'GrossPremium'
}, inplace=False)
print("Filtered")
print(filtered_df.head())
uids = filtered_df['UID']
if show_sum_insured == 'Yes':
sum_insured = filtered_df['SumInsured']
# else:
# sum_insured = filtered_df['GrossPremium']
policy_start_dates = filtered_df['PolicyStartDate']
policy_end_dates = filtered_df['PolicyEndDate']
gross_premiums = filtered_df['GrossPremium']
UID_expsoure = filtered_df['UID_expsoure']
print(gross_premiums.head())
if (len(gross_premiums.shape) == 2):
gross_premiums = gross_premiums.iloc[0]
print(gross_premiums.head())
print("UID shape:", uids.shape)
print("PolicyStartDate shape:", policy_start_dates.shape)
print("PolicyEndDate shape:", policy_end_dates.shape)
print("GrossPremium shape:", gross_premiums.shape)
print("UID_exposure shape:", UID_expsoure.shape)
if show_sum_insured == 'Yes':
if (len(sum_insured.shape) == 2):
sum_insured = sum_insured.iloc[0]
print("SumInsured shape:", sum_insured.shape)
PolicyDataframe = pd.DataFrame({
'UID': uids,
'SumInsured': sum_insured,
'PolicyStartDate': policy_start_dates,
'PolicyEndDate': policy_end_dates,
'GrossPremium': gross_premiums,
'UID_expsoure':UID_expsoure,
})
else:
PolicyDataframe = pd.DataFrame({
'UID': uids,
'PolicyStartDate': policy_start_dates,
'PolicyEndDate': policy_end_dates,
'GrossPremium': gross_premiums,
'UID_expsoure':UID_expsoure,
})
for column in custom_selected_values:
if column not in PolicyDataframe:
PolicyDataframe[column] = column
print(PolicyDataframe.head())
print("AFter update")
# sum_insured_available = request.POST.get('sum_insured_available') # This will be either "True" or "False"
# if sum_insured_available == "True":
# else:
# # The sum insured is not available, handle this case as needed
if show_sum_insured == 'Yes':
filtered_df = filtered_df.rename(columns={
sum_insured_column+'_SUM':'SumInsured',
}, inplace=False)
filtered_df = filtered_df.rename(columns={
gross_premium_col+'_SUM': 'GrossPremium',
}, inplace=False)
# Save the updated dataframe back to the session
request.session['final_df'] = filtered_df.to_json(orient='split')
# print(endorsement_date_col, start_date_col)
sum = entries1+entries2+entries3+entries4+entries5+entries6
if entries1<=0:
entries1=0
elif entries2<=0:
entries2=0
elif entries3<=0:
entries3=0
elif entries4<=0:
entries4=0
elif entries5<=0:
entries5=0
elif entries6<=0:
entries6=0
elif entries_removed_due_to_null_start_date<=0:
entries_removed_due_to_null_start_date=0
elif entries_removed_due_to_null_end_date<=0:
entries_removed_due_to_null_end_date=0
print("negative gross",negative_gross_df.head())
print("NULL",null_uids_df.head())
print("Size is ",len(filtered_df))
print("AT THE END DF")
print(null_end_df.head())
print("last",new_df.head())
print(expsoure_df_size)
# return render(request, 'myapp/navbar.html', {
# 'dataframe': filtered_df.head().to_html(classes='dataframe', index=False, escape=False),
# 'dataframe1': new_df.head().to_html(classes='dataframe', index=False, escape=False),
# 'NULL_START_UIDS': null_start_date_df.to_html(classes='dataframe',index=False, escape=False),
# 'NULL_END_UIDS': null_end_date_df.to_html(classes='dataframe',index=False, escape=False),
# 'show_download_link': True,
# 'original_count': total_counts,
# 'removed_count': sum,
# 'final_count': final_count,
# 'UID_count': entries1,
# 'END_DATE_count': entries2,
# 'START_DATECOUNT':entries3,
# 'END_DATE_COUNT':entries4,
# 'CANCELLATION_DATE_COUNT':entries5,
# 'GREATER_COUNT':entries6,
# 'START_NULL_COUNT':entries_removed_due_to_null_start_date,
# 'END_NULL_COUNT':entries_removed_due_to_null_end_date,
# 'Invalid_date':invalid_date_df.to_html(classes='dataframe', index=False, escape=False),
# 'gross_null':gross_null.to_html(classes='dataframe', index=False, escape=False),
# 'negative_gross_df':negative_gross_df.to_html(classes='dataframe', index=False, escape=False),
# 'null_uids_df':null_uids_df.to_html(classes='dataframe', index=False, escape=False),
# 'null_end_df':null_end_df.to_html(classes='dataframe', index=False, escape=False),
# 'Null_endorsement_count':null_count_endor,
# })
NULL_ENDOR_UIDS_len = len(null_end_df)
NULL_END_UIDS_len= len(null_end_date_df)
NULL_EXPO_UIDS_len= len(exposure_df)
NULL_INVALID_UIDS_len = len(invalid_date_df)
NULL_NEGATIVE_UIDS_len = len(negative_gross_df)
NULL_PREMIUM_UIDS_len = len(gross_null)
NULL_START_UIDS_len = len(null_start_date_df)
NULL_UIDS_UIDS_len = len(null_uids_df)
request.session['NULL_START_UIDS'] = null_start_date_df.to_json(orient='split')
request.session['NULL_END_UIDS'] = null_end_date_df.to_json(orient='split')
request.session['Invalid_date'] = invalid_date_df.to_json(orient='split')
request.session['gross_null'] = gross_null.to_json(orient='split')
request.session['negative_gross_df'] = negative_gross_df.to_json(orient='split')
request.session['null_uids_df'] = null_uids_df.to_json(orient='split')
request.session['null_end_df'] = null_end_df.to_json(orient='split')
request.session['exposure_df'] = exposure_df.to_json(orient='split')
results={
'dataframe': filtered_df.head().to_html(classes='dataframe', index=False, escape=False),
'dataframe1': new_df.head().to_html(classes='dataframe', index=False, escape=False),
'NULL_START_UIDS': null_start_date_df.to_html(classes='dataframe',index=False, escape=False),
'NULL_END_UIDS': null_end_date_df.to_html(classes='dataframe',index=False, escape=False),
'show_download_link': True,
'original_count': total_counts,
'removed_count': sum,
'final_count': final_count,
'UID_count': entries1,
'END_DATE_count': entries2,
'START_DATECOUNT':entries3,
'END_DATE_COUNT':entries4,
'CANCELLATION_DATE_COUNT':entries5,
'GREATER_COUNT':entries6,
'START_NULL_COUNT':entries_removed_due_to_null_start_date,
'END_NULL_COUNT':entries_removed_due_to_null_end_date,
'Invalid_date':invalid_date_df.head().to_html(classes='dataframe', index=False, escape=False),
'gross_null':gross_null.head().to_html(classes='dataframe', index=False, escape=False),
'negative_gross_df':negative_gross_df.head().to_html(classes='dataframe', index=False, escape=False),
'null_uids_df':null_uids_df.head().to_html(classes='dataframe', index=False, escape=False),
'null_end_df':null_end_df.head().to_html(classes='dataframe', index=False, escape=False),
'Null_endorsement_count':null_count_endor,
'exposure_df':exposure_df.head().to_html(classes='dataframe', index=False, escape=False),
'NULL_ENDOR_UIDS_len': NULL_ENDOR_UIDS_len,
'NULL_END_UIDS_len': NULL_END_UIDS_len,
'NULL_EXPO_UIDS_len': NULL_EXPO_UIDS_len,
'NULL_INVALID_UIDS_len': NULL_INVALID_UIDS_len,
'NULL_NEGATIVE_UIDS_len': NULL_NEGATIVE_UIDS_len,
'NULL_PREMIUM_UIDS_len': NULL_PREMIUM_UIDS_len,
'NULL_START_UIDS_len': NULL_START_UIDS_len,
'NULL_UIDS_UIDS_len': NULL_UIDS_UIDS_len
}
serializable_results = convert_numpy(results)
# Store the serializable results in the session
serializable_results = convert_numpy(results)
# Store the serializable results in the session
store_results_in_session(request, 'premium_results', serializable_results)
# Redirect to the display view
return redirect('display_results')
else:
# Find out which UIDs are causing the discrepancy
diff_uids = set(UID_DATAFRAME[uid_col]) - set(updated_merged_df[uid_col])
print(f"UIDs present in UID_DATAFRAME but not in updated_merged_df: {diff_uids}")
diff_uids = set(updated_merged_df[uid_col]) - set(UID_DATAFRAME[uid_col])
print(f"UIDs present in updated_merged_df but not in UID_DATAFRAME: {diff_uids}")
# Return a message if the entries are not the same
return HttpResponse("Dataframes don't have the same number of entries.")
except KeyError as e:
print(e)
return HttpResponse(f"Error: Column {e} not found in merged dataframe.")
def combined_results(request):
result1 = get_results_from_session(request, 'os_results')
result2 = get_results_from_session(request, 'claims_results')
result3 = get_results_from_session(request, 'premium_results')
combined = {
'os_results':result1,
'claims_results':result2,
'premium_results':result3,
}
if result3 and 'dataframe' in result3:
if result3['dataframe']:
print("Premium Results df_html contains data.")
else:
print("Premium Results df_html is empty.")
else:
print("Premium Results does not exist or df_html attribute is not present.")
return render(request, 'myapp/combined_results.html', combined)
import numpy as np
@csrf_exempt
def save_negative_exposures(request):
if request.method == "POST":
data = json.loads(request.body)
request.session['negative_exposures'] = data.get('negative_exposures', [])
return JsonResponse({'status': 'success'})
def handle_selected_values(request):
if request.method == 'POST':
data = json.loads(request.body)
request.session['selectedValues'] = data.get('selectedValues', [])
# Process the selected_values as needed...
return JsonResponse({'status': 'success', 'message': 'Selected values received'})
return JsonResponse({'status': 'error', 'message': 'Invalid request'}, status=400)
def handle_custom_selected_values(request):
if request.method == 'POST':
try:
data = json.loads(request.body)
custom_selected_values = data.get('customSelectedValues', [])
request.session['customSelectedValues'] = custom_selected_values
return JsonResponse({'status': 'success', 'message': 'Custom selected values received and processed'})
except json.JSONDecodeError:
return JsonResponse({'status': 'error', 'message': 'Invalid JSON'}, status=400)
except Exception as e:
return JsonResponse({'status': 'error', 'message': str(e)}, status=500)
else:
return JsonResponse({'status': 'error', 'message': 'Invalid request method'}, status=405)
def checks_left_view(request):
context = {
'dataframe': filtered_df.head().to_html(classes='dataframe', index=False, escape=False),
}
return render(request, 'myapp/checksLeft.html', context)
def download_csv(request):
# Load the updated dataframe from the session
updated_merged_df = pd.read_json(request.session.get('final_df', '{}'), orient='split')
#updated_merged_df = pd.read_json(request.session.get('updated_merged_df', '{}'), orient='split')
# Convert the dataframe to CSV
csv_data = updated_merged_df.to_csv(index=False)
# Create a response with the CSV data
response = HttpResponse(csv_data, content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename="updated_merged_data.csv"'
return response
def claims(request):
try:
template = loader.get_template('myapp/claims.html')
except Exception as e:
return HttpResponse(f"Error loading template: {e}", status=500)
return HttpResponse(template.render({}, request))
# def download_reported_claims(request):
# # Retrieve the DataFrame to download from the session
# df_json = request.session.get('download_reported')
# if df_json:
# print(df_json) # Debug: See the JSON string
# try:
# df = pd.read_json(df_json, orient='split')
# except ValueError as e:
# # Handle the error if the JSON structure is unexpected
# print(e)
# return HttpResponse("Error processing data to download.", status=500)
# response = HttpResponse(content_type='text/csv')
# response['Content-Disposition'] = 'attachment; filename="Reported_Claims.csv"'
# df.to_csv(path_or_buf=response, index=False)
# return response
# else:
# return HttpResponse("No data to download.", status=400)
def download_reported_claims(request):
# Retrieve the DataFrame to download from the session
df_json = request.session.get('check_df')
if df_json:
df = pd.read_json(df_json, orient='split')
response = HttpResponse(content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename="Reported_Claims.csv"'
df.to_csv(path_or_buf=response, index=False)
return response
else:
return HttpResponse("No data to download.", status=400)
def download_processed_data(request):
# Retrieve the DataFrame to download from the session
df_json = request.session.get('download_df')
if df_json:
df = pd.read_json(df_json, orient='split')
response = HttpResponse(content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename="processed_data.csv"'
df.to_csv(path_or_buf=response, index=False)
return response
else:
return HttpResponse("No data to download.", status=400)
def download_new_df_csv(request):
# Load new_df from the session
new_df = pd.read_json(request.session.get('new_df', '{}'), orient='split')
# Convert the dataframe to CSV
csv_data = new_df.to_csv(index=False)
# Create a response with the CSV data
response = HttpResponse(csv_data, content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename="new_data.csv"'
return response
import logging
# Get an instance of a logger
logger = logging.getLogger(__name__)
from django.shortcuts import render
def premium_checks(request):
return render(request, 'myapp/PremiumChecks.html')
def download_result_df_csv(request):
# Load result_df from the session
result_df = pd.read_json(request.session.get('result_df', '{}'), orient='split')
# Convert the dataframe to CSV
csv_data = result_df.to_csv(index=False)
# Create a response with the CSV data
response = HttpResponse(csv_data, content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename="result_data.csv"'
return response
def download_checks(request):
# Extract the name of the DataFrame from the request
dataframe_name = request.GET.get('name') # Assuming passed as a GET parameter
# Retrieve the DataFrame JSON string from the session
df_json = request.session.get(dataframe_name, None)
if not df_json:
return HttpResponse("Requested data not found in session", status=404)
# Convert JSON string back to DataFrame
df = pd.read_json(df_json, orient='split')
# Convert the DataFrame to CSV
csv_data = df.to_csv(index=False)
# Create a response with the CSV data
response = HttpResponse(csv_data, content_type='text/csv')
response['Content-Disposition'] = f'attachment; filename="{dataframe_name}.csv"'
return response
# def upload_mapping(request):
# #request.session.flush()
# print("*****************Loading Data*******************")
# message = ""
# columns = []
# file_details = []
# total_entries = 0
# is_merged = False
# dataframes = []
# if request.method == 'POST':
# form = CSVFileUploadForm1(request.POST, request.FILES)
# if form.is_valid():
# files = request.FILES.getlist('files')
# dataframes = []
# for file in files:
# df = pd.read_csv(file)
# num_entries = len(df)
# total_entries += num_entries # Add to total entries
# file_details.append({'name': file.name, 'entries': num_entries})
# dataframes.append(df)
# merged_df = pd.concat(dataframes)
# # Convert the merged DataFrame to JSON and store it in the session
# request.session['merged_df'] = merged_df.to_json(orient='split')
# message = "Files Merged Successfully"
# is_merged = True
# # Store the column names in the session
# request.session['merged_columns'] = merged_df.columns.tolist()
# columns = merged_df.columns.tolist()
# else:
# form = CSVFileUploadForm1()
# return render(request, 'myapp/Mapping_upload.html', {
# 'form': form,
# 'message': message,
# 'is_merged': is_merged,
# 'columns': columns,
# 'file_details': file_details, # Pass the file details to the template
# 'total_entries': total_entries, # Pass the total entries to the template
# })
from io import BytesIO
from django.http import HttpResponse
# Mapping as header
# def download_excel(request):
# import json
# import pandas as pd
# from io import BytesIO
# from django.http import HttpResponse
# # Parse JSON data from the request body
# data = json.loads(request.body)
# selected_columns = data.get('selected_columns', [])
# # Log the selected columns to verify
# print("Selected Columns:", selected_columns)
# # Load DataFrame from session (make sure it's properly stored as JSON)
# merged_df = pd.read_json(request.session.get('merged_df', '{}'), orient='split')
# print("DataFrame Head:", merged_df.head())
# # Create filtered data for selected columns
# filtered_data = {column: merged_df[[column]].dropna() for column in selected_columns if column in merged_df.columns}
# print("Filtered Data Keys:", filtered_data.keys())
# # Create an Excel file in-memory
# output = BytesIO()
# with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
# for column, data in filtered_data.items():
# if not data.empty:
# # Create value counts with dynamic column names
# value_counts = data[column].value_counts().reset_index()
# value_counts.columns = [column, 'Count'] # Use the column name dynamically
# # Add a new empty "Mapping" column
# value_counts['Mapping'] = pd.Series([''] * len(value_counts))
# value_counts.to_excel(writer, sheet_name=column, index=False)
# # Reset the position to the beginning of the stream
# output.seek(0)
# # Create a response
# response = HttpResponse(output.getvalue(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
# response['Content-Disposition'] = 'attachment; filename="selected_data.xlsx"'
# return response
from django.shortcuts import render
import pandas as pd
def upload_mapping(request):
print("*****************Loading Data*******************")
message = ""
columns = []
file_details = []
total_entries = 0
is_merged = False
dataframes = []
# Check if data is available in session
merged_df_json = request.session.get('new_df')
if merged_df_json:
merged_df = pd.read_json(merged_df_json, orient='split')
total_entries = merged_df.shape[0] # Get the total number of entries
columns = merged_df.columns.tolist() # Get the list of columns
message = "Data retrieved from session."
is_merged = True
else:
message = "No data found in session. Please upload data."
return render(request, 'myapp/Mapping_upload.html', {
'message': message,
'is_merged': is_merged,
'columns': columns,
'total_entries': total_entries, # Pass the total entries to the template
})
def download_excel(request):
import json
import pandas as pd
from io import BytesIO
from django.http import HttpResponse
# Parse JSON data from the request body
data = json.loads(request.body)
selected_columns = data.get('selected_columns', [])
# Log the selected columns to verify
print("Selected Columns:", selected_columns)
# Load DataFrame from session (make sure it's properly stored as JSON)
merged_df = pd.read_json(request.session.get('new_df', '{}'), orient='split')
print("DataFrame Head:", merged_df.head())
# Create filtered data for selected columns
filtered_data = {column: merged_df[[column]].dropna() for column in selected_columns if column in merged_df.columns}
print("Filtered Data Keys:", filtered_data.keys())
# Create an Excel file in-memory
output = BytesIO()
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
for column, data in filtered_data.items():
if not data.empty:
# Create value counts with dynamic column names
value_counts = data[column].value_counts().reset_index()
value_counts.columns = [column, 'Count'] # Use the column name dynamically
# Add a new "Mapping{sheetName}" column dynamically named based on the sheet name
mapping_column_name = f'Mapping_{column}'
value_counts[mapping_column_name] = pd.Series([''] * len(value_counts))
value_counts.to_excel(writer, sheet_name=column, index=False)
# Reset the position to the beginning of the stream
output.seek(0)
# Create a response
response = HttpResponse(output.getvalue(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
response['Content-Disposition'] = 'attachment; filename="selected_data.xlsx"'
return response
from .forms import ExcelUploadForm, CSVFileUploadForm
import pandas as pd
# def MappingData(request):
# excel_form = ExcelUploadForm(request.POST or None, request.FILES or None)
# csv_form = CSVFileUploadForm(request.POST or None, request.FILES or None)
# message = ''
# if request.method == 'POST':
# if excel_form.is_valid() and 'excel_file' in request.FILES:
# excel_file = excel_form.cleaned_data['excel_file']
# excel_path = handle_uploaded_file(excel_file, 'excel')
# # Here you could process the excel file directly or return the path to the user for confirmation
# message = 'Excel file uploaded successfully! '
# if csv_form.is_valid() and 'premium_file' in request.FILES:
# csv_file = csv_form.cleaned_data['premium_file']
# csv_path = handle_uploaded_file(csv_file, 'csv')
# # Similarly, handle the CSV file directly here
# message += 'CSV file uploaded successfully! '
# context = {
# 'excel_form': excel_form,
# 'csv_form': csv_form,
# 'message': message
# }
# return render(request, 'myapp/MappingData.html', context)
def MappingData(request):
excel_form = ExcelUploadForm(request.POST or None, request.FILES or None)
message = ''
if request.method == 'POST':
if excel_form.is_valid() and 'excel_file' in request.FILES:
excel_file = excel_form.cleaned_data['excel_file']
excel_path = handle_uploaded_file(excel_file, 'excel')
message = 'Excel file uploaded successfully!'
context = {
'excel_form': excel_form,
'message': message
}
return render(request, 'myapp/MappingData.html', context)
import os
def fetch_column_data(request):
excel_file = request.FILES.get('excel_file')
if excel_file is None:
return JsonResponse({'error': 'Excel file not provided'}, status=400)
# Read premium data from session
new_df_json = request.session.get('new_df')
if new_df_json:
premium_df = pd.read_json(new_df_json, orient='split')
premium_columns = premium_df.columns.tolist()
else:
return JsonResponse({'error': 'Session does not contain premium data'}, status=500)
try:
excel = pd.ExcelFile(excel_file)
excel_columns = excel.sheet_names
except Exception as e:
return JsonResponse({'error': f'Failed to read Excel file: {str(e)}'}, status=500)
return JsonResponse({'premium_columns': premium_columns, 'excel_columns': excel_columns})
def handle_uploaded_file(file, file_type):
# Define file path based on file type
file_path = f'media/{file_type}_{file.name}'
with open(file_path, 'wb+') as destination:
for chunk in file.chunks():
destination.write(chunk)
return file_path
# def get_columns(request):
# excel_columns = request.session.get('excel_columns', [])
# premium_columns = request.session.get('premium_columns', [])
# return JsonResponse({
# 'excel_columns': excel_columns,
# 'premium_columns': premium_columns
# })
# def process_mapping_data(request):
# if request.method == 'POST':
# try:
# excel_file = request.FILES.get('excel_file')
# csv_file = request.FILES.get('premium_file')
# if not excel_file or not csv_file:
# return JsonResponse({'error': 'Excel or CSV file not found in request'}, status=400)
# mappings_data = request.POST.get('mappings')
# if not mappings_data:
# return JsonResponse({'error': 'Mappings data not provided'}, status=400)
# mappings = json.loads(mappings_data)
# premium_df = pd.read_csv(csv_file)
# excel = pd.ExcelFile(excel_file)
# results = []
# # Process all mappings and combine them into a single DataFrame for download
# for mapping in mappings:
# sheet_df = pd.read_excel(excel, sheet_name=mapping['sheetName'])
# if 'Count' in sheet_df.columns:
# sheet_df.drop('Count', axis=1, inplace=True)
# result_df = pd.merge(
# sheet_df, premium_df, left_on=sheet_df.columns[0], right_on=mapping['columnName'], how='left'
# )
# results.append(result_df)
# # Combine all results into one DataFrame if there are multiple mappings
# if results:
# combined_df = pd.concat(results)
# # Convert DataFrame to CSV
# response = HttpResponse(content_type='text/csv')
# response['Content-Disposition'] = 'attachment; filename="updated_premium_file.csv"'
# combined_df.to_csv(path_or_buf=response, index=False)
# return response
# else:
# return JsonResponse({'error': 'No data processed'}, status=400)
# except Exception as e:
# return JsonResponse({'error': str(e)}, status=500)
# else:
# return JsonResponse({'error': 'Invalid HTTP method'}, status=405)
# def process_mapping_data(request):
# import json
# import pandas as pd
# from django.http import JsonResponse, HttpResponse
# if request.method == 'POST':
# try:
# excel_file = request.FILES.get('excel_file')
# csv_file = request.FILES.get('premium_file')
# if not excel_file or not csv_file:
# return JsonResponse({'error': 'Excel or CSV file not found in request'}, status=400)
# mappings_data = request.POST.get('mappings')
# if not mappings_data:
# return JsonResponse({'error': 'Mappings data not provided'}, status=400)
# mappings = json.loads(mappings_data)
# premium_df = pd.read_csv(csv_file)
# excel = pd.ExcelFile(excel_file)
# results = []
# # Process all mappings and combine them into a single DataFrame for download
# for mapping in mappings:
# sheet_name = mapping['sheetName']
# sheet_df = pd.read_excel(excel, sheet_name=sheet_name)
# mapping_column_name = f'Mapping_{sheet_name}' # dynamically construct the mapping column name
# # Ensure only necessary columns are processed
# if mapping_column_name in sheet_df.columns:
# sheet_df = sheet_df[[sheet_name, mapping_column_name]]
# # Perform the left join using the specified mapping
# result_df = pd.merge(
# premium_df, sheet_df, left_on=mapping['columnName'], right_on=sheet_name, how='left'
# )
# # Include this merged data in results
# results.append(result_df)
# else:
# # Log or handle the case where the expected mapping column does not exist
# print(f"Expected mapping column '{mapping_column_name}' not found in sheet '{sheet_name}'.")
# # Combine all results into one DataFrame if there are multiple mappings
# if results:
# combined_df = pd.concat(results, ignore_index=True)
# # Convert DataFrame to CSV
# response = HttpResponse(content_type='text/csv')
# response['Content-Disposition'] = 'attachment; filename="updated_premium_file.csv"'
# combined_df.to_csv(path_or_buf=response, index=False)
# return response
# else:
# return JsonResponse({'error': 'No data processed'}, status=400)
# except Exception as e:
# return JsonResponse({'error': str(e)}, status=500)
# else:
# return JsonResponse({'error': 'Invalid HTTP method'}, status=405)
# mapping_data_final = pd.concat([df for df in filtered_data.values()], axis=1)
# # Serialize the final DataFrame and store it in the session
# request.session['mapping_data_final'] = mapping_data_final.to_json(orient='split')
# request.session.modified = True
def process_mapping_data(request):
import json
from django.http import JsonResponse, HttpResponse
if request.method == 'POST':
excel_file = request.FILES.get('excel_file')
if not excel_file:
return JsonResponse({'error': 'Excel file not found in request'}, status=400)
mappings_data = request.POST.get('mappings')
if not mappings_data:
return JsonResponse({'error': 'Mappings data not provided'}, status=400)
# Retrieve premium DataFrame from session
new_df_json = request.session.get('new_df')
if new_df_json:
premium_df = pd.read_json(new_df_json, orient='split')
print("The premiu_df is")
print(premium_df.head())
else:
return JsonResponse({'error': 'Session does not contain premium data'}, status=500)
try:
mappings = json.loads(mappings_data)
excel = pd.ExcelFile(excel_file)
# Same mapping process as before
for mapping in mappings:
sheet_name = mapping['sheetName']
sheet_df = pd.read_excel(excel, sheet_name=sheet_name)
mapping_column_name = f'Mapping_{sheet_name}'
if mapping_column_name in sheet_df.columns:
sheet_df = sheet_df[[sheet_name, mapping_column_name]]
premium_df = pd.merge(
premium_df, sheet_df, left_on=mapping['columnName'], right_on=sheet_name, how='left', suffixes=('', f'_{sheet_name}')
)
request.session['mapping_data_final'] = premium_df.to_json(orient='split')
response = HttpResponse(content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename="updated_premium_file.csv"'
premium_df.to_csv(path_or_buf=response, index=False)
return response
except Exception as e:
return JsonResponse({'error': str(e)}, status=500)
else:
return JsonResponse({'error': 'Invalid HTTP method'}, status=405)
Editor is loading...
Leave a Comment