Untitled
unknown
plain_text
2 years ago
20 kB
4
Indexable
## Train SSD ain SSD""" import argparse import os import logging import warnings import time import numpy as np import mxnet as mx from mxnet import nd from mxnet import gluon from mxnet import autograd import gluoncv as gcv gcv.utils.check_version('0.6.0') from gluoncv import data as gdata from gluoncv import utils as gutils from gluoncv.model_zoo import get_model from gluoncv.data.batchify import Tuple, Stack, Pad from gluoncv.data.transforms.presets.ssd import SSDDefaultTrainTransform from gluoncv.data.transforms.presets.ssd import SSDDefaultValTransform from gluoncv.data.transforms.presets.ssd import SSDDALIPipeline from gluoncv.utils.metrics.voc_detection import VOC07MApMetric from gluoncv.utils.metrics.coco_detection import COCODetectionMetric from gluoncv.utils.metrics.accuracy import Accuracy from mxnet.contrib import amp try: import horovod.mxnet as hvd except ImportError: hvd = None try: from nvidia.dali.plugin.mxnet import DALIGenericIterator dali_found = True except ImportError: dali_found = False def parse_args(): parser = argparse.ArgumentParser(description='Train SSD networks.') parser.add_argument('--network', type=str, default='vgg16_atrous', help="Base network name which serves as feature extraction base.") parser.add_argument('--data-shape', type=int, default=300, help="Input data shape, use 300, 512.") parser.add_argument('--batch-size', type=int, default=32, help='Training mini-batch size') parser.add_argument('--dataset', type=str, default='voc', help='Training dataset. Now support voc.') parser.add_argument('--dataset-root', type=str, default='~/.mxnet/datasets/', help='Path of the directory where the dataset is located.') parser.add_argument('--num-workers', '-j', dest='num_workers', type=int, default=4, help='Number of data workers, you can use larger ' 'number to accelerate data loading, if you CPU and GPUs are powerful.') parser.add_argument('--gpus', type=str, default='0', help='Training with GPUs, you can specify 1,3 for example.') parser.add_argument('--epochs', type=int, default=240, help='Training epochs.') parser.add_argument('--resume', type=str, default='', help='Resume from previously saved parameters if not None. ' 'For example, you can resume from ./ssd_xxx_0123.params') parser.add_argument('--start-epoch', type=int, default=0, help='Starting epoch for resuming, default is 0 for new training.' 'You can specify it to 100 for example to start from 100 epoch.') parser.add_argument('--lr', type=float, default=0.001, help='Learning rate, default is 0.001') parser.add_argument('--lr-decay', type=float, default=0.1, help='decay rate of learning rate. default is 0.1.') parser.add_argument('--lr-decay-epoch', type=str, default='160,200', help='epochs at which learning rate decays. default is 160,200.') parser.add_argument('--momentum', type=float, default=0.9, help='SGD momentum, default is 0.9') parser.add_argument('--wd', type=float, default=0.0005, help='Weight decay, default is 5e-4') parser.add_argument('--log-interval', type=int, default=100, help='Logging mini-batch interval. Default is 100.') parser.add_argument('--save-prefix', type=str, default='', help='Saving parameter prefix') parser.add_argument('--save-interval', type=int, default=10, help='Saving parameters epoch interval, best model will always be saved.') parser.add_argument('--val-interval', type=int, default=1, help='Epoch interval for validation, increase the number will reduce the ' 'training time if validation is slow.') parser.add_argument('--seed', type=int, default=233, help='Random seed to be fixed.') parser.add_argument('--syncbn', action='store_true', help='Use synchronize BN across devices.') parser.add_argument('--dali', action='store_true', help='Use DALI for data loading and data preprocessing in training. ' 'Currently supports only COCO.') parser.add_argument('--amp', action='store_true', help='Use MXNet AMP for mixed precision training.') parser.add_argument('--horovod', action='store_true', help='Use MXNet Horovod for distributed training. Must be run with OpenMPI. ' '--gpus is ignored when using --horovod.') args = parser.parse_args() if args.horovod: assert hvd, "You are trying to use horovod support but it's not installed" return args def get_dataset(dataset, args): if dataset.lower() == 'voc': train_dataset = gdata.VOCDetection( splits=[(2007, 'trainval'), (2012, 'trainval')]) val_dataset = gdata.VOCDetection( splits=[(2007, 'test')]) val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes) elif dataset.lower() == 'coco': train_dataset = gdata.COCODetection(root=args.dataset_root + "/coco", splits='instances_train2017') val_dataset = gdata.COCODetection(root=args.dataset_root + "/coco", splits='instances_val2017', skip_empty=False) val_metric = COCODetectionMetric( val_dataset, args.save_prefix + '_eval', cleanup=True, data_shape=(args.data_shape, args.data_shape)) # coco validation is slow, consider increase the validation interval if args.val_interval == 1: args.val_interval = 10 else: raise NotImplementedError('Dataset: {} not implemented.'.format(dataset)) return train_dataset, val_dataset, val_metric def get_dataloader(net, train_dataset, val_dataset, data_shape, batch_size, num_workers, ctx): """Get dataloader.""" width, height = data_shape, data_shape # use fake data to generate fixed anchors for target generation with autograd.train_mode(): _, _, anchors = net(mx.nd.zeros((1, 3, height, width), ctx)) anchors = anchors.as_in_context(mx.cpu()) batchify_fn = Tuple(Stack(), Stack(), Stack()) # stack image, cls_targets, box_targets train_loader = gluon.data.DataLoader( train_dataset.transform(SSDDefaultTrainTransform(width, height, anchors)), batch_size, True, batchify_fn=batchify_fn, last_batch='rollover', num_workers=num_workers) val_batchify_fn = Tuple(Stack(), Pad(pad_val=-1)) val_loader = gluon.data.DataLoader( val_dataset.transform(SSDDefaultValTransform(width, height)), batch_size, False, batchify_fn=val_batchify_fn, last_batch='keep', num_workers=num_workers) return train_loader, val_loader def get_dali_dataset(dataset_name, devices, args): if dataset_name.lower() == "coco": # training expanded_file_root = os.path.expanduser(args.dataset_root) coco_root = os.path.join(expanded_file_root, 'coco', 'train2017') coco_annotations = os.path.join(expanded_file_root, 'coco', 'annotations', 'instances_train2017.json') if args.horovod: train_dataset = [gdata.COCODetectionDALI(num_shards=hvd.size(), shard_id=hvd.rank(), file_root=coco_root, annotations_file=coco_annotations, device_id=hvd.local_rank())] else: train_dataset = [gdata.COCODetectionDALI(num_shards= len(devices), shard_id=i, file_root=coco_root, annotations_file=coco_annotations, device_id=i) for i, _ in enumerate(devices)] # validation if (not args.horovod or hvd.rank() == 0): val_dataset = gdata.COCODetection(root=os.path.join(args.dataset_root + '/coco'), splits='instances_val2017', skip_empty=False) val_metric = COCODetectionMetric( val_dataset, args.save_prefix + '_eval', cleanup=True, data_shape=(args.data_shape, args.data_shape)) else: val_dataset = None val_metric = None else: raise NotImplementedError('Dataset: {} not implemented with DALI.'.format(dataset_name)) return train_dataset, val_dataset, val_metric def get_dali_dataloader(net, train_dataset, val_dataset, data_shape, global_batch_size, num_workers, devices, ctx, horovod, seed): width, height = data_shape, data_shape with autograd.train_mode(): _, _, anchors = net(mx.nd.zeros((1, 3, height, width), ctx=ctx)) anchors = anchors.as_in_context(mx.cpu()) if horovod: batch_size = global_batch_size // hvd.size() pipelines = [SSDDALIPipeline(device_id=hvd.local_rank(), batch_size=batch_size, data_shape=data_shape, anchors=anchors, num_workers=num_workers, dataset_reader = train_dataset[0], seed=seed)] else: num_devices = len(devices) batch_size = global_batch_size // num_devices pipelines = [SSDDALIPipeline(device_id=device_id, batch_size=batch_size, data_shape=data_shape, anchors=anchors, num_workers=num_workers, dataset_reader = train_dataset[i], seed=seed) for i, device_id in enumerate(devices)] epoch_size = train_dataset[0].size() if horovod: epoch_size //= hvd.size() train_loader = DALIGenericIterator(pipelines, [('data', DALIGenericIterator.DATA_TAG), ('bboxes', DALIGenericIterator.LABEL_TAG), ('label', DALIGenericIterator.LABEL_TAG)], epoch_size, auto_reset=True) # validation if (not horovod or hvd.rank() == 0): val_batchify_fn = Tuple(Stack(), Pad(pad_val=-1)) val_loader = gluon.data.DataLoader( val_dataset.transform(SSDDefaultValTransform(width, height)), global_batch_size, False, batchify_fn=val_batchify_fn, last_batch='keep', num_workers=num_workers) else: val_loader = None return train_loader, val_loader def save_params(net, best_map, current_map, epoch, save_interval, prefix): current_map = float(current_map) if current_map > best_map[0]: best_map[0] = current_map net.save_params('{:s}_best.params'.format(prefix, epoch, current_map)) with open(prefix+'_best_map.log', 'a') as f: f.write('{:04d}:\t{:.4f}\n'.format(epoch, current_map)) if save_interval and epoch % save_interval == 0: net.save_params('{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map)) def validate(net, val_data, ctx, eval_metric): """Test on validation dataset.""" eval_metric.reset() # set nms threshold and topk constraint net.set_nms(nms_thresh=0.45, nms_topk=400) net.hybridize(static_alloc=True, static_shape=True) for batch in val_data: data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0, even_split=False) label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0, even_split=False) det_bboxes = [] det_ids = [] det_scores = [] gt_bboxes = [] gt_ids = [] gt_difficults = [] for x, y in zip(data, label): # get prediction results ids, scores, bboxes = net(x) det_ids.append(ids) det_scores.append(scores) # clip to image size det_bboxes.append(bboxes.clip(0, batch[0].shape[2])) # split ground truths gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5)) gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4)) gt_difficults.append(y.slice_axis(axis=-1, begin=5, end=6) if y.shape[-1] > 5 else None) # update metric eval_metric.update(det_bboxes, det_ids, det_scores, gt_bboxes, gt_ids, gt_difficults) return eval_metric.get() def train(net, train_data, val_data, eval_metric, ctx, args): """Training pipeline""" net.collect_params().reset_ctx(ctx) if args.horovod: hvd.broadcast_parameters(net.collect_params(), root_rank=0) trainer = hvd.DistributedTrainer( net.collect_params(), 'sgd', {'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum}) else: trainer = gluon.Trainer( net.collect_params(), 'sgd', {'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum}, update_on_kvstore=(False if args.amp else None)) if args.amp: amp.init_trainer(trainer) # lr decay policy lr_decay = float(args.lr_decay) lr_steps = sorted([float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()]) mbox_loss = gcv.loss.SSDMultiBoxLoss() ce_metric = mx.metric.Loss('CrossEntropy') smoothl1_metric = mx.metric.Loss('SmoothL1') # set up logger logging.basicConfig() logger = logging.getLogger() logger.setLevel(logging.INFO) log_file_path = args.save_prefix + '_train.log' log_dir = os.path.dirname(log_file_path) if log_dir and not os.path.exists(log_dir): os.makedirs(log_dir) fh = logging.FileHandler(log_file_path) logger.addHandler(fh) logger.info(args) logger.info('Start training from [Epoch {}]'.format(args.start_epoch)) best_map = [0] for epoch in range(args.start_epoch, args.epochs): while lr_steps and epoch >= lr_steps[0]: new_lr = trainer.learning_rate * lr_decay lr_steps.pop(0) trainer.set_learning_rate(new_lr) logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr)) ce_metric.reset() smoothl1_metric.reset() tic = time.time() btic = time.time() net.hybridize(static_alloc=True, static_shape=True) for i, batch in enumerate(train_data): if args.dali: # dali iterator returns a mxnet.io.DataBatch data = [d.data[0] for d in batch] box_targets = [d.label[0] for d in batch] cls_targets = [nd.cast(d.label[1], dtype='float32') for d in batch] else: data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0) cls_targets = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0) box_targets = gluon.utils.split_and_load(batch[2], ctx_list=ctx, batch_axis=0) with autograd.record(): cls_preds = [] box_preds = [] for x in data: cls_pred, box_pred, _ = net(x) cls_preds.append(cls_pred) box_preds.append(box_pred) sum_loss, cls_loss, box_loss = mbox_loss( cls_preds, box_preds, cls_targets, box_targets) if args.amp: with amp.scale_loss(sum_loss, trainer) as scaled_loss: autograd.backward(scaled_loss) else: autograd.backward(sum_loss) # since we have already normalized the loss, we don't want to normalize # by batch-size anymore trainer.step(1) if (not args.horovod or hvd.rank() == 0): local_batch_size = int(args.batch_size // (hvd.size() if args.horovod else 1)) ce_metric.update(0, [l * local_batch_size for l in cls_loss]) smoothl1_metric.update(0, [l * local_batch_size for l in box_loss]) if args.log_interval and not (i + 1) % args.log_interval: name1, loss1 = ce_metric.get() name2, loss2 = smoothl1_metric.get() logger.info('[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}={:.3f}, {}={:.3f}'.format( epoch, i, args.batch_size/(time.time()-btic), name1, loss1, name2, loss2)) btic = time.time() if (not args.horovod or hvd.rank() == 0): name1, loss1 = ce_metric.get() name2, loss2 = smoothl1_metric.get() logger.info('[Epoch {}] Training cost: {:.3f}, {}={:.3f}, {}={:.3f}'.format( epoch, (time.time()-tic), name1, loss1, name2, loss2)) if (epoch % args.val_interval == 0) or (args.save_interval and epoch % args.save_interval == 0): # consider reduce the frequency of validation to save time map_name, mean_ap = validate(net, val_data, ctx, eval_metric) val_msg = '\n'.join(['{}={}'.format(k, v) for k, v in zip(map_name, mean_ap)]) logger.info('[Epoch {}] Validation: \n{}'.format(epoch, val_msg)) current_map = float(mean_ap[-1]) else: current_map = 0. save_params(net, best_map, current_map, epoch, args.save_interval, args.save_prefix) if __name__ == '__main__': args = parse_args() if args.amp: amp.init() if args.horovod: hvd.init() # fix seed for mxnet, numpy and python builtin random generator. gutils.random.seed(args.seed) # training contexts if args.horovod: ctx = [mx.gpu(hvd.local_rank())] else: ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()] ctx = ctx if ctx else [mx.cpu()] # network net_name = '_'.join(('ssd', str(args.data_shape), args.network, args.dataset)) args.save_prefix += net_name if args.syncbn and len(ctx) > 1: net = get_model(net_name, pretrained_base=True, norm_layer=gluon.contrib.nn.SyncBatchNorm, norm_kwargs={'num_devices': len(ctx)}) async_net = get_model(net_name, pretrained_base=False) # used by cpu worker else: net = get_model(net_name, pretrained_base=True, norm_layer=gluon.nn.BatchNorm) async_net = net if args.resume.strip(): net.load_parameters(args.resume.strip()) async_net.load_parameters(args.resume.strip()) else: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") net.initialize() async_net.initialize() # needed for net to be first gpu when using AMP net.collect_params().reset_ctx(ctx[0]) # training data if args.dali: if not dali_found: raise SystemExit("DALI not found, please check if you installed it correctly.") devices = [int(i) for i in args.gpus.split(',') if i.strip()] train_dataset, val_dataset, eval_metric = get_dali_dataset(args.dataset, devices, args) train_data, val_data = get_dali_dataloader( async_net, train_dataset, val_dataset, args.data_shape, args.batch_size, args.num_workers, devices, ctx[0], args.horovod, args.seed) else: train_dataset, val_dataset, eval_metric = get_dataset(args.dataset, args) batch_size = (args.batch_size // hvd.size()) if args.horovod else args.batch_size train_data, val_data = get_dataloader( async_net, train_dataset, val_dataset, args.data_shape, batch_size, args.num_workers, ctx[0]) # training train(net, train_data, val_data, eval_metric, ctx, args)
Editor is loading...
Leave a Comment