Untitled
unknown
plain_text
9 months ago
6.4 kB
8
Indexable
import pandas as pd
import numpy as np
from dateutil.relativedelta import relativedelta
import math
def get_price_on_date(prices_df, target_date, ticker):
"""
Returns the last available price on or before target_date for a given ticker.
"""
df_filtered = prices_df[prices_df['Date'] <= target_date]
if df_filtered.empty:
return np.nan
return df_filtered.iloc[-1][ticker]
def compute_momentum_for_asset(prices_df, current_date, ticker, lookback_months):
"""
Computes three momentum signals for the given asset and lookback period.
Returns:
- total_return (price-based momentum)
- price_minus_sma (distance from moving average)
- risk_adjusted (risk-adjusted momentum)
"""
start_date = current_date - relativedelta(months=lookback_months)
price_start = get_price_on_date(prices_df, start_date, ticker)
price_current = get_price_on_date(prices_df, current_date, ticker)
if pd.isna(price_start) or pd.isna(price_current):
return np.nan, np.nan, np.nan
total_return = (price_current / price_start) - 1
prices_window = prices_df[(prices_df['Date'] >= start_date) & (prices_df['Date'] <= current_date)][ticker]
sma = prices_window.mean() if not prices_window.empty else np.nan
price_minus_sma = (price_current / sma) - 1 if (not pd.isna(sma) and sma != 0) else np.nan
numerator = np.log(price_current / price_start)
prices_period = prices_df[(prices_df['Date'] >= start_date) & (prices_df['Date'] <= current_date)][ticker].sort_index()
if len(prices_period) < 2:
risk_adjusted = np.nan
else:
log_returns = np.log(prices_period / prices_period.shift(1)).dropna()
denominator = log_returns.abs().sum()
risk_adjusted = numerator / denominator if denominator != 0 else np.nan
return total_return, price_minus_sma, risk_adjusted
def compute_aggregated_momentum(prices_df, current_date, ticker, lookback_periods):
"""
Computes aggregated momentum for an asset over multiple lookback periods.
Returns:
- aggregated_score: the average of all momentum signals (across all lookbacks)
- is_positive: True only if every individual signal is positive.
- signals: list of individual signals (for inspection)
"""
signals = []
for lb in lookback_periods:
tr, pma, ra = compute_momentum_for_asset(prices_df, current_date, ticker, lb)
if pd.isna(tr) or pd.isna(pma) or pd.isna(ra):
return None, None, None # Incomplete data; skip asset.
signals.extend([tr, pma, ra])
agg_score = np.mean(signals)
# Flag as positive only if every signal is > 0.
is_positive = all(x > 0 for x in signals)
return agg_score, is_positive, signals
def backtest_momentum_strategy(prices_df, start_date, end_date, rebalance_frequency, lookback_periods, aum, top_n, risk_on_list, risk_off_list):
"""
Backtests the long-only momentum strategy with adjusted selection rules.
"""
prices_df['Date'] = pd.to_datetime(prices_df['Date'])
prices_df.sort_values('Date', inplace=True)
# Build rebalancing dates
rebalance_dates = pd.date_range(start=start_date, end=end_date, freq=rebalance_frequency)
current_aum = aum
result_records = []
current_portfolio = {} # {ticker: (quantity, entry_price)}
for i, reb_date in enumerate(rebalance_dates):
if i > 0 and current_portfolio:
portfolio_value = 0
for ticker, (qty, entry_price) in current_portfolio.items():
price_today = get_price_on_date(prices_df, reb_date, ticker)
portfolio_value += qty * price_today
current_aum = portfolio_value
# Compute momentum scores for risk_on assets
all_risk_on = []
for ticker in risk_on_list:
agg_score, is_positive, _ = compute_aggregated_momentum(prices_df, reb_date, ticker, lookback_periods)
if agg_score is not None:
all_risk_on.append((ticker, agg_score, is_positive))
# Separate assets with strictly positive momentum
positive_risk_on = [(ticker, score) for ticker, score, pos in all_risk_on if pos]
# Sort lists by aggregated score descending
positive_risk_on_sorted = sorted(positive_risk_on, key=lambda x: x[1], reverse=True)
all_risk_on_sorted = sorted(all_risk_on, key=lambda x: x[1], reverse=True)
# Selection logic based on your relaxed conditions:
if len(positive_risk_on_sorted) >= 6:
# Sufficient positive risk_on assets; take top 6.
final_selection = [ticker for ticker, score in positive_risk_on_sorted[:6]]
elif len(positive_risk_on_sorted) >= 4:
# Between 4 and 5 positive risk_on; include all of them plus both risk_off assets.
final_selection = [ticker for ticker, score in positive_risk_on_sorted] + risk_off_list
else:
# Fewer than 4 positive risk_on assets: ignore sign and select the top 4 risk_on.
if len(all_risk_on_sorted) < 4:
selected = [ticker for ticker, score, pos in all_risk_on_sorted]
needed = 4 - len(selected)
final_selection = selected + risk_off_list[:needed]
else:
final_selection = [ticker for ticker, score, pos in all_risk_on_sorted[:4]]
# Allocate equal weight among the selected assets
allocation = current_aum / len(final_selection) if final_selection else 0
positions = {}
entry_prices = {}
for ticker in final_selection:
price_at_entry = get_price_on_date(prices_df, reb_date, ticker)
qty = allocation / price_at_entry if price_at_entry != 0 else 0
positions[ticker] = (qty, price_at_entry)
entry_prices[ticker] = price_at_entry
record = {
'Rebalance Date': reb_date,
'Final AUM': current_aum,
'Selected Assets': final_selection,
'Quantities': [positions[ticker][0] for ticker in final_selection],
'Entry Prices': [positions[ticker][1] for ticker in final_selection]
}
result_records.append(record)
current_portfolio = positions.copy()
result_df = pd.DataFrame(result_records)
return result_df
Editor is loading...
Leave a Comment