Untitled
unknown
plain_text
2 years ago
1.6 kB
1
Indexable
Never
library(tidyverse) library(lme4) library(ggeffects) lmm_data <- read.csv(file = 'lmm_data.csv') lmm_data ## only intercept variable (means are different) mixed.lmer2 <- lmer(LVEF ~ BMI + (1| ethnicity), data=lmm_data) summary(mixed.lmer2) ## intercept and slope (generally different and progresses at different rates) mixed.ranslope <- lmer(LVEF ~ BMI + (1 + BMI | ethnicity), data = lmm_data) summary(mixed.ranslope) library(ggeffects) # Extract the prediction data frame pred.mm <- ggpredict(mixed.ranslope, terms = c("BMI")) # this gives overall predictions for the model # Plot the predictions (ggplot(pred.mm) + geom_line(aes(x = x, y = predicted)) + # slope geom_ribbon(aes(x = x, ymin = predicted - std.error, ymax = predicted + std.error), fill = "lightgrey", alpha = 0.5) + # error band geom_point(data = lmm_data, # adding the raw data (scaled values) aes(x = BMI, y = LVEF, colour = ethnicity)) + labs(x = "BMI", y = "LVEF", title = "Body length does not affect intelligence in dragons") + theme_minimal() ) ggpredict(mixed.ranslope, terms = c("BMI", "ethnicity"), type = "re", ci.lvl = NA) %>% plot() + scale_fill_manual(values=c("#CC0000", "#006600", "#669999", "#00CCCC", "#660099", "#CC0066", "#FF9999", "#FF9900", "black", "orange", "green", "yellow", "blue", "brown", "red", "cyan", "black", "black", "black","black")) + labs(x = "BMI", y = "LVEF", title = "Effect of body size on intelligence in dragons") + theme_minimal()