Untitled
unknown
plain_text
3 years ago
1.6 kB
9
Indexable
library(tidyverse)
library(lme4)
library(ggeffects)
lmm_data <- read.csv(file = 'lmm_data.csv')
lmm_data
## only intercept variable (means are different)
mixed.lmer2 <- lmer(LVEF ~ BMI + (1| ethnicity), data=lmm_data)
summary(mixed.lmer2)
## intercept and slope (generally different and progresses at different rates)
mixed.ranslope <- lmer(LVEF ~ BMI + (1 + BMI | ethnicity), data = lmm_data)
summary(mixed.ranslope)
library(ggeffects)
# Extract the prediction data frame
pred.mm <- ggpredict(mixed.ranslope, terms = c("BMI")) # this gives overall predictions for the model
# Plot the predictions
(ggplot(pred.mm) +
geom_line(aes(x = x, y = predicted)) + # slope
geom_ribbon(aes(x = x, ymin = predicted - std.error, ymax = predicted + std.error),
fill = "lightgrey", alpha = 0.5) + # error band
geom_point(data = lmm_data, # adding the raw data (scaled values)
aes(x = BMI, y = LVEF, colour = ethnicity)) +
labs(x = "BMI", y = "LVEF",
title = "Body length does not affect intelligence in dragons") +
theme_minimal()
)
ggpredict(mixed.ranslope, terms = c("BMI", "ethnicity"), type = "re", ci.lvl = NA) %>%
plot() +
scale_fill_manual(values=c("#CC0000", "#006600", "#669999", "#00CCCC",
"#660099", "#CC0066", "#FF9999", "#FF9900",
"black", "orange", "green", "yellow", "blue",
"brown", "red", "cyan", "black", "black", "black","black")) +
labs(x = "BMI", y = "LVEF", title = "Effect of body size on intelligence in dragons") +
theme_minimal()Editor is loading...