Untitled
unknown
plain_text
a year ago
1.3 kB
6
Indexable
import pandas as pd from sklearn import preprocessing from keras.api.models import Sequential from keras.api.layers import Dense import matplotlib.pyplot as plt dh = pd.read_csv('housepricedata.csv') datahouse = dh.values X = datahouse[:,0:10] Y = datahouse[:,10] min_max_scaler = preprocessing.MinMaxScaler() X_scale = min_max_scaler.fit_transform(X) X_scale from sklearn.model_selection import train_test_split X_train, X_val_and_test, Y_train, Y_val_and_test = train_test_split(X_scale, Y, test_size = 0.3) X_val, X_test, Y_val, Y_test = train_test_split(X_val_and_test, Y_val_and_test, test_size = 0.5) print(X_train.shape, X_val.shape, X_test.shape, Y_train.shape, Y_val.shape, Y_test.shape) model = Sequential([ Dense(100, activation='relu', input_shape=(10,)), Dense(100, activation='relu'), Dense(1, activation='sigmoid'), ]) model.compile(optimizer='sgd', loss='binary_crossentropy' , metrics=['accuracy']) hist = model.fit(X_train, Y_train, batch_size=32, epochs=100, validation_data=(X_val, Y_val)) plt.plot(hist.history['loss']) plt.plot(hist.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Val'], loc='upper right') plt.show() model.evaluate(X_test, Y_test)[1]
Editor is loading...
Leave a Comment