Untitled

 avatar
unknown
plain_text
a year ago
3.6 kB
5
Indexable
import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms,datasets
import torchsummary
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from torchvision.transforms import ToTensor
import torch.optim as optim
import cv2
import math
import time
import gudhi as gd
from pylab import *


##### U-NET #####
class UNet(nn.Module):
    def __init__(
        self,
        in_channels=1,
        n_classes=2,
        depth=5,
        wf=6,
        padding=False,
        batch_norm=False,
        up_mode='upconv',
    ):

        super(UNet, self).__init__()
        assert up_mode in ('upconv', 'upsample')
        self.padding = padding
        self.depth = depth
        prev_channels = in_channels
        self.down_path = nn.ModuleList()
        for i in range(depth):
            self.down_path.append(
                UNetConvBlock(prev_channels, 2 ** (wf + i), padding, batch_norm)
            )
            prev_channels = 2 ** (wf + i)

        self.up_path = nn.ModuleList()
        for i in reversed(range(depth - 1)):
            self.up_path.append(
                UNetUpBlock(prev_channels, 2 ** (wf + i), up_mode, padding, batch_norm)
            )
            prev_channels = 2 ** (wf + i)

        self.last = nn.Conv2d(prev_channels, n_classes, kernel_size=1)

    def forward(self, x):
        blocks = []
        for i, down in enumerate(self.down_path):
            x = down(x)
            if i != len(self.down_path) - 1:
                blocks.append(x)
                x = F.max_pool2d(x, 2)

        for i, up in enumerate(self.up_path):
            x = up(x, blocks[-i - 1])

        return self.last(x)

class UNetConvBlock(nn.Module):
    def __init__(self, in_size, out_size, padding, batch_norm):
        super(UNetConvBlock, self).__init__()
        block = []

        block.append(nn.Conv2d(in_size, out_size, kernel_size=3, padding=int(padding)))
        block.append(nn.ReLU())
        if batch_norm:
            block.append(nn.BatchNorm2d(out_size))

        block.append(nn.Conv2d(out_size, out_size, kernel_size=3, padding=int(padding)))
        block.append(nn.ReLU())
        if batch_norm:
            block.append(nn.BatchNorm2d(out_size))

        self.block = nn.Sequential(*block)

    def forward(self, x):
        out = self.block(x)
        return out

class UNetUpBlock(nn.Module):
    def __init__(self, in_size, out_size, up_mode, padding, batch_norm):
        super(UNetUpBlock, self).__init__()
        if up_mode == 'upconv':
            self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2)
        elif up_mode == 'upsample':
            self.up = nn.Sequential(
                nn.Upsample(mode='bilinear', scale_factor=2),
                nn.Conv2d(in_size, out_size, kernel_size=1),
            )

        self.conv_block = UNetConvBlock(in_size, out_size, padding, batch_norm)

    def center_crop(self, layer, target_size):
        _, _, layer_height, layer_width = layer.size()
        diff_y = (layer_height - target_size[0]) // 2
        diff_x = (layer_width - target_size[1]) // 2
        return layer[
            :, :, diff_y : (diff_y + target_size[0]), diff_x : (diff_x + target_size[1])
        ]

    def forward(self, x, bridge):
        up = self.up(x)
        crop1 = self.center_crop(bridge, up.shape[2:])
        out = torch.cat([up, crop1], 1)
        out = self.conv_block(out)

        return out
Editor is loading...
Leave a Comment