Untitled
unknown
plain_text
3 years ago
1.1 kB
8
Indexable
y = train_dataset[34]['audio']['array']
seccoes = seccionar(y,5e-2)
print("N° seccoes:",len(seccoes))
print("\n\n")
for seccao in seccoes[:5]:
spec = np.abs(librosa.stft(seccao, n_fft= 512))#, hop_length= 2**6))
spec = librosa.amplitude_to_db(spec, ref=np.max)
print(spec.shape)
plt.figure(figsize = (15,7))
librosa.display.specshow(spec, x_axis='time', y_axis='log');
plt.colorbar(format='%+2.0f dB');
plt.title('Spectrogram');
novo_img_trainset = []
novo_labels = []
for numero,audio in enumerate(train_dataset):
y = audio['audio']['array']
label = audio['label']
threshold = np.abs(y).max()/10
seccoes = seccionar(y,threshold)
print("audio numero:",numero ," | N° seccoes:",len(seccoes))
# print("\n\n")
for seccao in seccoes:
spec = np.abs(librosa.stft(seccao, n_fft= 512))#, hop_length= 2**6))
spec = librosa.amplitude_to_db(spec, ref=np.max)
novo_img_trainset.append(spec)
novo_labels.append(label)
Editor is loading...