Untitled
unknown
plain_text
3 years ago
1.1 kB
3
Indexable
y = train_dataset[34]['audio']['array'] seccoes = seccionar(y,5e-2) print("N° seccoes:",len(seccoes)) print("\n\n") for seccao in seccoes[:5]: spec = np.abs(librosa.stft(seccao, n_fft= 512))#, hop_length= 2**6)) spec = librosa.amplitude_to_db(spec, ref=np.max) print(spec.shape) plt.figure(figsize = (15,7)) librosa.display.specshow(spec, x_axis='time', y_axis='log'); plt.colorbar(format='%+2.0f dB'); plt.title('Spectrogram'); novo_img_trainset = [] novo_labels = [] for numero,audio in enumerate(train_dataset): y = audio['audio']['array'] label = audio['label'] threshold = np.abs(y).max()/10 seccoes = seccionar(y,threshold) print("audio numero:",numero ," | N° seccoes:",len(seccoes)) # print("\n\n") for seccao in seccoes: spec = np.abs(librosa.stft(seccao, n_fft= 512))#, hop_length= 2**6)) spec = librosa.amplitude_to_db(spec, ref=np.max) novo_img_trainset.append(spec) novo_labels.append(label)
Editor is loading...