import os
import geopandas
import rasterio as rio
from PIL import Image
Image.MAX_IMAGE_PIXELS = 300000000
## Transformando em RGB
# Caminho das imagens: B04 = Red, B03 = Green, B02 = Blue
redPath = "assets/geodata/dump_r2/S2A_MSIL2A_20220512T133231_N0400_R081_T22JCP_20220512T202012.SAFE/GRANULE/L2A_T22JCP_A035971_20220512T133948/IMG_DATA/R10m/T22JCP_20220512T133231_B04_10m.jp2"
greenPath = "assets/geodata/dump_r2/S2A_MSIL2A_20220512T133231_N0400_R081_T22JCP_20220512T202012.SAFE/GRANULE/L2A_T22JCP_A035971_20220512T133948/IMG_DATA/R10m/T22JCP_20220512T133231_B03_10m.jp2"
bluePath = "assets/geodata/dump_r2/S2A_MSIL2A_20220512T133231_N0400_R081_T22JCP_20220512T202012.SAFE/GRANULE/L2A_T22JCP_A035971_20220512T133948/IMG_DATA/R10m/T22JCP_20220512T133231_B02_10m.jp2"
## Pega as bandas
"""
redConv = Image.open(redPath)
redConv.save("red.tiff", "TIFF")
greenConv = Image.open(greenPath)
greenConv.save("green.tiff", "TIFF")
blueConv = Image.open(bluePath)
blueConv.save("blue.tiff", "TIFF")
"""
red = rio.open(redPath)
green = rio.open(greenPath)
blue = rio.open(bluePath)
# Cria o arquivo RGB, sendo que driver é o formato, count a quantidade de bandas, crs o sistema de coordenadas referenciadas e transform a afinidade espacial geográfica.
rgb = rio.open("RGB.tiff", 'w+', driver="Gtiff", width=red.width, height=red.height, count=3, crs=red.crs, transform=red.transform, dtype=red.dtypes[0])
rgb.write(blue.read(1), 1)
rgb.write(green.read(1), 2)
rgb.write(red.read(1), 3)
rgbData = rgb.read()
print(rgbData)
print(rgbData.shape)
print(red.shape)
print(green.shape)
print(blue.shape)
rgb.close()