Untitled
unknown
plain_text
a year ago
1.3 kB
1
Indexable
Never
function x4$(x4) "this function returns a string to indicate the state of steam at point 4" x4$='' if (x4>1) then x4$='(superheated)' if (x4<0) then x4$='(compressed)' end P[3] = 20000 {kPa} T[3] = 500 [C] P[4] = 10 {kPa} Eta_t = 1,0 "Turbine isentropic efficiency" Eta_p = 1,0 "Pump isentropic efficiency" "Pump analysis" P[1] = P[4] P[2]=P[3] x[1]=0 "Sat'd liquid" h=Enthalpy(Water;x=x;P=P) v=Volume(Water;x=x;P=P) s=Entropy(Water;x=x;P=P) T=Temperature(Water;P=P;x=x) W_p_s=v[1]*(P[2]-P[1]) "SSSF isentropic pump work assuming constant specific volume" W_p=W_p_s/Eta_p h[2]=h[1]+W_p "SSSF First Law for the pump" s[2]=Entropy(Water;P=P[2],h=h[2]) T[2]=T(Water;P=P[2],h=h[2]) "Turbine analysis" h[3]=h(Water;T=T[3],P=P[3]) s[3]=Entropy(Water;T=T[3],P=P[3]) s_s[4]=s[3] hs[4]=h(s=s_s[4],P=P[4]) Ts[4]=T(s=s_s[4],P=P[4]) W_t=h[3]-hs[4] "Turbine work" Eta_t=(h[3]-h[4])/(h[3]-hs[4]) "Definition of turbine efficiency" T[4]=T(P=P[4],h=h[4]) s[4]=s(h=h[4],P=P[4]) x[4]=x(h=h[4],P=P[4]) h[4] = h[3] - W_t "SSSF First Law for the turbine" x4s$=x4$(x[4]) "Boiler analysis" Q_in = h[3]-h[2] "SSSF First Law for the Boiler" "Condenser analysis" Q_out = h[4]-h[1] "SSSF First Law for the Condenser" "Cycle Statistics" W_net=W_t-W_p Eta_th=W_net/Q_in Solve