Untitled
unknown
plain_text
5 months ago
936 B
2
Indexable
import numpy as np importmatplotlib.pyplot as plt fromscipy.stats import pearsonr np.random.seed(42) x=np.random.randn(15) y=x+np.random.randn(15) plt.scatter(x,y) plt.plot(np.unique(x),np.poly1d(np.polyfit(x,y,1))(np.unique(x))) plt.xlabel('x') plt.ylabel('y') plt.show() corr,_=pearsonr(x,y) print('pearsons correlation:%.3f'%corr) fromsklearn.metrics.pairwise import cosine_similarity cos_sin=cosine_similarity(x.reshape(1,-1),y.reshape(1,-1)) print('cosine similarity:%.3f'%cos_sin) OUTPUT: cosine similarity:0.773 #jaccard_score fromsklearn.metrics import Jaccard score a=[1,1,1,0] b=[1,1,0,1] jacc=Jaccard score(a,b) print("Jaccard score:%.3f"%jacc) OUTPUT: Jaccard_score:0.500 #Euclidean Distance fromscipy.spatial import distance dat=distance.euclidean(x,y) print("Euclidean distance:%.3f"%dat) OUTPUT: Euclidean distance:3.273 #manhattan Distance dst=distance.cityblock(x,y) print("Manhattan Distance:%.3f"%dst)
Editor is loading...
Leave a Comment