Simple AGI Agent Model
GPT4 Prompt: Write Python code for a basic agi agent modelunknown
python
a year ago
2.4 kB
12
Indexable
import numpy as np class SimpleAGIAgent: def __init__(self, states, actions): self.states = states # A list of possible states self.actions = actions # A list of possible actions self.q_table = np.zeros((states, actions)) # Q-Value table self.learning_rate = 0.1 # How quickly the agent updates its knowledge self.discount_rate = 0.95 # Importance of future rewards self.exploration_rate = 1.0 # Initial exploration rate self.exploration_decay = 0.01 # Decay rate for exploration self.min_exploration_rate = 0.01 # Minimum exploration rate def choose_action(self, state): # Decide whether to explore or exploit if np.random.rand() < self.exploration_rate: action = np.random.choice(self.actions) else: action = np.argmax(self.q_table[state]) return action def update_q_table(self, state, action, reward, next_state): # Update Q-Value table using the Q-learning algorithm next_max = np.max(self.q_table[next_state]) q_value = self.q_table[state, action] new_q_value = (1 - self.learning_rate) * q_value + self.learning_rate * (reward + self.discount_rate * next_max) self.q_table[state, action] = new_q_value # Decay exploration rate self.exploration_rate = max(self.min_exploration_rate, self.exploration_rate - self.exploration_decay) # Example usage states = 10 # For simplicity, assume 10 possible states actions = 2 # Assume 2 possible actions agent = SimpleAGIAgent(states, actions) # Simulate agent's decision making and learning in an environment for episode in range(100): # Simulate 100 episodes state = np.random.randint(0, states) # Random initial state done = False # To simulate the end of an episode while not done: action = agent.choose_action(state) next_state = (state + 1) % states # Simplistic environment response reward = 1 if next_state == 0 else -1 # Reward for reaching a specific state agent.update_q_table(state, action, reward, next_state) state = next_state done = state == 0 # Episode ends when reaching state 0 print(f"Episode {episode + 1}, Exploration rate: {agent.exploration_rate}") # Print the learned Q-values print("Learned Q-Values:") print(agent.q_table)
Editor is loading...
Leave a Comment