Untitled
unknown
python
2 years ago
1.2 kB
2
Indexable
import pandas as pd def download_data(): df = pd.read_csv(urlData) return df def feature_engineering(df): df = df[df['Fuel Information.Fuel Types'] == 'Gasoline'] df = df[df['Make'] == 'Honda'] df = df[df['Fuel Information.Highway mpg'] < df['Fuel Information.Highway mpg'].quantile(0.90)] df = df.loc[:, ['Fuel Information.Highway mpg', 'Engine Information.Engine Statistics.Horsepower']] df = (df - df.min()) / (df.max() - df.min()) return df def linear_regression(x, y): x = x.values y = y.values x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0) model = LinearRegression() model.fit(x_train, y_train) y_pred = model.predict(x_test) print('Predicted values: ', y_pred) print('Coefficient: ', model.coef_) print('Intercept: ', model.intercept_) print('Mean squared error: %.2f' % mean_squared_error(y_test, y_pred)) print('R2 score: %.2f' % r2_score(y_test, y_pred)) if __name__ == '__main__': df = download_data() df = feature_engineering(df) linear_regression(df['Fuel Information.Highway mpg'], df['Engine Information.Engine Statistics.Horsepower'])
Editor is loading...