Untitled
unknown
python
a year ago
849 B
2
Indexable
Never
def run_model(model, tokenizer, batch): # Tokenize and encode the input data input_ids = tokenizer.batch_encode_plus(batch, padding=True, truncation=True, return_tensors='pt')['input_ids'] decoder_input_ids = torch.ones_like(input_ids) # Perform inference on each batch and store the probability values probabilities = [] with torch.no_grad(): logits = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids, return_dict=True).logits print(logits.shape, tokenizer.encode("no"), tokenizer.encode("yes")) probabilities_batch = torch.softmax(logits[:, :, [tokenizer.encode("no")[0], tokenizer.encode("yes")[0]]], dim=-1) yes_probs = 1 - probabilities_batch[:, -1, 1] probabilities.extend(yes_probs.tolist()) # Print the probability values return probabilities