Untitled
unknown
plain_text
a year ago
2.5 kB
20
Indexable
在这段代码的基础上,我对其进行了一些修改,并补充了计算EMD Loss的部分
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SinkhornSim(torch.nn.Module):
def __init__(self, eps=1e-3, max_iter=100, reduction='sum'):
super(SinkhornSim, self).__init__()
self.eps = eps
self.max_iter = max_iter
self.reduction = reduction
def forward(self, x, y): # 在这里将输入的维度更改为[B, C, N]
# 扁平化空间维度
B, C, num_points = x.size()
x = x.view(B, num_points, C)
y = y.view(B, num_points, C)
# 转换为概率分布
x = F.softmax(x, dim=-1)
y = F.softmax(y, dim=-1)
# 计算成本矩阵 (Euclidean 距离)
cost_matrix = torch.cdist(x, y, p=2) ** 2
# cost_matrix = torch.cdist(x, y, p=2)
# Sinkhorn-Knopp 迭代的初始化
K = torch.exp(-cost_matrix / self.eps)
u = torch.ones(B, num_points).to(x.device) / num_points
v = torch.ones(B, num_points).to(y.device) / num_points
#Sinkhorn 迭代
for _ in range(self.max_iter):
u = 1.0 / (K.bmm(v.unsqueeze(-1)).squeeze(-1) + 1e-8)
v = 1.0 / (K.transpose(1, 2).bmm(u.unsqueeze(-1)).squeeze(-1) + 1e-8)
# 计算Wasserstein 距离
transport_plan = u.unsqueeze(-1) * K * v.unsqueeze(-2)
distance = torch.sum(transport_plan * cost_matrix, dim=(1, 2))
# return torch.exp(-distance)
return 1-distance / (torch.sum(transport_plan * cost_matrix, dim=(1, 2)) + 1e-9)
class EMD(torch.nn.Module):
def __init__(self):
super().__init__()
self.sinkhorn = SinkhornSim()
def forward(self, x, y):
# Cost Matrix
M = 1 - torch.matmul(x.unsqueeze(2), y.unsqueeze(3)).squeeze(-1).squeeze(-1) # similarity score
# Marginal weights
b,c,h,w=x.shape
r = torch.ones((b,h*w),device=x.device)/h
c = torch.ones((b,h*w), device=y.device) / w
transport_plan, _, _ = self.sinkhorn(M,r,c)
S = (torch.sum(transport_plan * M)+ 1e-9)
return 2 - 2 * S
if __name__ == "__main__":
x1 = torch.randn(1, 1024, 7, 7)
x2 = torch.randn(1, 1024, 7, 7)
emdloss = EMD()
print(emdloss(x1, x2))
print(emdloss(x1, x1))
```
以上代码对输入进行了调整,使支持[B,C,N]形式的输入。同时补充了计算EMD Loss的部分。Editor is loading...
Leave a Comment