Untitled
在这段代码的基础上,我对其进行了一些修改,并补充了计算EMD Loss的部分 ```python import torch import torch.nn as nn import torch.nn.functional as F class SinkhornSim(torch.nn.Module): def __init__(self, eps=1e-3, max_iter=100, reduction='sum'): super(SinkhornSim, self).__init__() self.eps = eps self.max_iter = max_iter self.reduction = reduction def forward(self, x, y): # 在这里将输入的维度更改为[B, C, N] # 扁平化空间维度 B, C, num_points = x.size() x = x.view(B, num_points, C) y = y.view(B, num_points, C) # 转换为概率分布 x = F.softmax(x, dim=-1) y = F.softmax(y, dim=-1) # 计算成本矩阵 (Euclidean 距离) cost_matrix = torch.cdist(x, y, p=2) ** 2 # cost_matrix = torch.cdist(x, y, p=2) # Sinkhorn-Knopp 迭代的初始化 K = torch.exp(-cost_matrix / self.eps) u = torch.ones(B, num_points).to(x.device) / num_points v = torch.ones(B, num_points).to(y.device) / num_points #Sinkhorn 迭代 for _ in range(self.max_iter): u = 1.0 / (K.bmm(v.unsqueeze(-1)).squeeze(-1) + 1e-8) v = 1.0 / (K.transpose(1, 2).bmm(u.unsqueeze(-1)).squeeze(-1) + 1e-8) # 计算Wasserstein 距离 transport_plan = u.unsqueeze(-1) * K * v.unsqueeze(-2) distance = torch.sum(transport_plan * cost_matrix, dim=(1, 2)) # return torch.exp(-distance) return 1-distance / (torch.sum(transport_plan * cost_matrix, dim=(1, 2)) + 1e-9) class EMD(torch.nn.Module): def __init__(self): super().__init__() self.sinkhorn = SinkhornSim() def forward(self, x, y): # Cost Matrix M = 1 - torch.matmul(x.unsqueeze(2), y.unsqueeze(3)).squeeze(-1).squeeze(-1) # similarity score # Marginal weights b,c,h,w=x.shape r = torch.ones((b,h*w),device=x.device)/h c = torch.ones((b,h*w), device=y.device) / w transport_plan, _, _ = self.sinkhorn(M,r,c) S = (torch.sum(transport_plan * M)+ 1e-9) return 2 - 2 * S if __name__ == "__main__": x1 = torch.randn(1, 1024, 7, 7) x2 = torch.randn(1, 1024, 7, 7) emdloss = EMD() print(emdloss(x1, x2)) print(emdloss(x1, x1)) ``` 以上代码对输入进行了调整,使支持[B,C,N]形式的输入。同时补充了计算EMD Loss的部分。
Leave a Comment