Untitled
unknown
latex
9 months ago
1.5 kB
8
Indexable
\begin{algorithm}[t]
\footnotesize
\caption{ECD Inference}
\label{alg:algorithm}
\KwIn{Graph $G = (V, E)$; Sharing links $E$.}
\textbf{Hyper-parameters}: number of communities $C$, social prior size $s$, \\
\hspace{2.1cm} echo-chamber prior size $h$, learning rate $\lambda$, \\
\hspace{2.1cm} number of optimization steps for each iteration $H$. \\
\KwOut{Polarities $\eta$, memberships $\theta$, and $\phi$.}
Randomly initialize $\Theta^{(0)} = \{\eta^{(0)}, \theta^{(0)}, \phi^{(0)}\}$ and set $t=0$\;
\Repeat{convergence}{
Let $\Theta^{(*)} = \Theta^{(t)}$\;
\For{$w \in \{1, \ldots, H\}$}{
Sample $X$ from $E \cup E^\I$\;
\ForEach{$\ell, \p \in X$ and $c \in \{1, \ldots, C\}$}{
Compute posteriors $\gamma_{\ell,c}$ and $\xi_{\p,c}$ according to Eqs.~\ref{eq:posteriors},~\ref{eq:priors} and the current parameters $\Theta^{(t)}$\;
\tcp*[h]{E Step}
}
Compute the expected likelihood $\mathcal{Q}$ according to Eqs.~\ref{eq:complete-llk} and~\ref{eq:priors} and the posteriors $\gamma$ and $\xi$\;
Update the parameters:
\[
\Theta^{(*)} = \Theta^{(*)} + \lambda \nabla_{\Theta} \mathcal{Q}(\Theta^{(*)}, \Theta^{(t)}|X)
\]
\tcp*[h]{M Step}
}
Set $\Theta^{(t+1)} = \Theta^{(*)}$ and increase $t$\;
}
\normalsize
\end{algorithm}Editor is loading...
Leave a Comment