Untitled
unknown
latex
16 days ago
1.5 kB
6
Indexable
\begin{algorithm}[t] \footnotesize \caption{ECD Inference} \label{alg:algorithm} \KwIn{Graph $G = (V, E)$; Sharing links $E$.} \textbf{Hyper-parameters}: number of communities $C$, social prior size $s$, \\ \hspace{2.1cm} echo-chamber prior size $h$, learning rate $\lambda$, \\ \hspace{2.1cm} number of optimization steps for each iteration $H$. \\ \KwOut{Polarities $\eta$, memberships $\theta$, and $\phi$.} Randomly initialize $\Theta^{(0)} = \{\eta^{(0)}, \theta^{(0)}, \phi^{(0)}\}$ and set $t=0$\; \Repeat{convergence}{ Let $\Theta^{(*)} = \Theta^{(t)}$\; \For{$w \in \{1, \ldots, H\}$}{ Sample $X$ from $E \cup E^\I$\; \ForEach{$\ell, \p \in X$ and $c \in \{1, \ldots, C\}$}{ Compute posteriors $\gamma_{\ell,c}$ and $\xi_{\p,c}$ according to Eqs.~\ref{eq:posteriors},~\ref{eq:priors} and the current parameters $\Theta^{(t)}$\; \tcp*[h]{E Step} } Compute the expected likelihood $\mathcal{Q}$ according to Eqs.~\ref{eq:complete-llk} and~\ref{eq:priors} and the posteriors $\gamma$ and $\xi$\; Update the parameters: \[ \Theta^{(*)} = \Theta^{(*)} + \lambda \nabla_{\Theta} \mathcal{Q}(\Theta^{(*)}, \Theta^{(t)}|X) \] \tcp*[h]{M Step} } Set $\Theta^{(t+1)} = \Theta^{(*)}$ and increase $t$\; } \normalsize \end{algorithm}
Editor is loading...
Leave a Comment