Untitled

 avatar
unknown
plain_text
2 years ago
1.2 kB
4
Indexable
# Making Sure that only numbers are parsed through Data Frame 
def _contains_nan(a, nan_policy='propagate', use_summation=True):
    if not isinstance(a, np.ndarray):
        use_summation = False  # some array_likes ignore nans (e.g. pandas)
    policies = ['propagate', 'raise', 'omit']
    if nan_policy not in policies:
        raise ValueError("nan_policy must be one of {%s}" %
                         ', '.join("'%s'" % s for s in policies))         
        
        
def _isconst(x):
    y = x[~np.isnan(x)]
    if y.size == 0:
        return np.array([True])
    else:
        return (y[0] == y).all(keepdims=True)
    
    
def _quiet_nanmean(x):
    y = x[~np.isnan(x)]
    if y.size == 0:
        return np.array([np.nan])
    else:
        return np.mean(y, keepdims=True)
    
    
def _quiet_nanstd(x, ddof=0):
    y = x[~np.isnan(x)]
    if y.size == 0:
        return np.array([np.nan])
    else:
        return np.std(y, keepdims=True, ddof=ddof)
    
    
def _first(arr, axis):
    return np.take_along_axis(arr, np.array(0, ndmin=arr.ndim), axis)


print("Function Generated to Handle NaN cases\n")
Editor is loading...