Untitled
unknown
python
a year ago
988 B
6
Indexable
model.load_state_dict(torch.load("mnist_cnn.pt")) model = torch.quantization.quantize_dynamic(model, dtype=torch.qint8) weight1 = model.conv1.weight.tolist() weight2 = model.conv2.weight.tolist() weight3 = model.fc1.weight.T.tolist() weight4 = model.fc2.weight.T.tolist() @fhe.compiler({"x": "encrypted"}) def f(x): x = fhe.conv(x, weight1, kernel_shape=(3, 3), strides=(1, 1)) x = fhe.relu(x) x = fhe.conv(x, weight2, kernel_shape=(3, 3), strides=(1, 1)) x = fhe.relu(x) x = fhe.maxpool(x, kernel_shape=(2, 2), strides=(2, 2)) x = x.reshape(x.shape[0], -1) x = np.matmul(x, weight3) # pyright: ignore x = fhe.relu(x) x = np.matmul(x, weight4) # pyright: ignore return x inputset = [[[x.tolist()]] for x in dataset1.data[:1000]] circuit = f.compile(inputset, relu_on_bits_threshold=9, use_gpu=True) sample = [[np.array(dataset2.data[0])]] print(np.linalg.norm(np.array(circuit.encrypt_run_decrypt(sample)).flatten()))
Editor is loading...
Leave a Comment