Untitled
# create_training_data.py import numpy as np from grabscreen import grab_screen import cv2 import time from getkeys import key_check import os def keys_to_output(keys): ''' Convert keys to a ...multi-hot... array [A,W,S,D,SA,SD] boolean values. ''' output = [0,0,0,0,0,0] if 'A' in keys: output[0] = 1 elif 'W' in keys: output[1] = 1 elif 'S' in keys: output[2] = 1 elif 'D' in keys: output[3] = 1 elif 'S' in keys and 'A' in keys: output[4] = 1 elif 'S' in keys and 'D' in keys: output[5] = 1 return output file_name = 'final2_training_data.npy' if os.path.isfile(file_name): print('File exists, loading previous data!') training_data = list(np.load(file_name), allow_pickle = True) else: print('File does not exist, starting fresh!') training_data = [] def main(): for i in list(range(4))[::-1]: print(i+1) time.sleep(1) paused = False while(True): if not paused: # 800x600 windowed mode screen = grab_screen(region=(0,40,800,640)) screen = cv2.cvtColor(screen, cv2.COLOR_BGR2GRAY) screen = cv2.resize(screen, (160,120)) # resize to something a bit more acceptable for a CNN keys = key_check() output = keys_to_output(keys) training_data.append([screen,output]) if len(training_data) % 1000 == 0: print(len(training_data)) np.save(file_name,training_data) keys = key_check() if 'T' in keys: if paused: paused = False print('unpaused!') time.sleep(1) else: print('Pausing!') paused = True time.sleep(1) main()
Leave a Comment