Untitled
unknown
plain_text
2 years ago
1.6 kB
5
Indexable
final_1 <- function(N, M, param, k, lambda, B, myfun="normal", mystat="median"){ coverage_sim <- 0 length_sim <- 0 results <- c() for(n in N){ for(m in M){ # Generate m random Samples for(i in 1:m){ #generate random sample x = rweibull(n,shape=k,scale=lambda) #print(summary(x)) # determine the actual population parameter - median boot.samples = bootsampling(x, boot.replicates = B) boot.out <- switch( mystat, "median"=boot.stats(boot.samples, median), "variance"=boot.stats(boot.samples, var) ) sample_stat <- switch( mystat, "median" = median(x), "variance" = var(x) ) confint_sim = switch( myfun, "normal" = normal_ci(sample_stat, boot.out), "basic" = basic_ci(sample_stat, boot.out), "percentile" = percentile_ci(sample_stat, boot.out), "studentized" = studentized_ci(boot.samples, boot.out, sample_stat) ) #cat("confidence interval: [", confint_sim[1], ",", confint_sim[2], "]", "\n") length <- confint_sim[2] - confint_sim[1] length_sim <- length_sim + length if(param <= confint_sim[2] && param >= confint_sim[1]){ coverage_sim <- coverage_sim +1 } } coverage <- coverage_sim/m length <- length_sim/m #cat("n =", n, ", M =",m, ":", "\n") #cat("Avg. Length:", length, "Coverage %:", coverage, "\n") coverage_sim <- 0 length_sim <- 0 result <- c(coverage, length) results <- c(results, result) } } results }
Editor is loading...