Untitled
import scipy.optimize as opt import numpy as np def rosenbrock(x): x1, x2 = x return 100*(x2 - x1**2)**2 + (1 - x1)**2 def grad_rosenbrock(x): x1, x2 = x dfdx1 = -400*x1*(x2 - x1**2) - 2*(1 - x1) dfdx2 = 200*(x2 - x1**2) return np.array([dfdx1, dfdx2]) x0 = np.array([0, 0]) res = opt.minimize(rosenbrock, x0, jac=grad_rosenbrock) print(res.x) print(res.fun) def gradient_descent(f, grad_f, x0, alpha=0.001, tol=1e-6, max_iter=10000): x = x0 for i in range(max_iter): x_new = x - alpha*grad_f(x) if np.linalg.norm(x_new - x) < tol: break x = x_new return x x0 = np.array([0, 0]) x = gradient_descent(rosenbrock, grad_rosenbrock, x0) print(x)
Leave a Comment