Untitled

mail@pastecode.io avatar
unknown
plain_text
2 years ago
9.9 kB
1
Indexable

DATA=0;
while DATA==0
Nb = 5;            %  
N = 0;              %  
T = 0.0115;              %  
a = -0.825;              %   
C = 1;      %    
w0 = 0.523;    %    
m = 5;              %  
U = 5;              %  
n0 = 3;            %   
n_imp = 5;      %  
B = [1.5, 5.7, 2.2] ;              %  
w = [0.785, 0.3925, 0.196];              %   
A = [1.5, 0.7, 1.4]  ;        %    
Mean = 3;  %    
Var = 5;
disp('%     ')
disp('%      1')
disp('%      0   ')
DATA = input('--> '); 
end
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .1.   ')
disp('%')
disp('%')
disp('%        <ENTER>')
pause 
n = 0:(N-1); nT = T.*n;      %     
u0 = [1 zeros(1,(N-1))];     %   
figure('Name','Digital Unit Impulse, Unit Step, and Discrete Exponent','NumberTitle', 'off')
subplot(3,2,1),stem(nT,u0,'Linewidth',2), grid
title('Digital Unit Impulse u0(nT)')
subplot(3,2,2),stem(n,u0,'Linewidth',2), grid 
title('Digital Unit Impulse u0(n)')
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .2.   ');
disp('%')
disp('%')
disp('%        <ENTER>')
pause 
u1 = [1 ones(1,(N-1))];       %   
subplot(3,2,3),stem(nT,u1,'Linewidth',2), grid
title('Digital Unit Step u1(nT)'), 
subplot(3,2,4),stem(n,u1,'Linewidth',2), grid
title('Digital Unit Step u1(n)')
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .3.  ')
disp('%')
disp('%')
disp('%       <ENTER>')
pause
x1 = a.^n;                   %  
subplot(3,2,5),stem(nT,x1,'Linewidth',2), xlabel('nT'), grid
title('Discrete Exponent x1(nT)')
subplot(3,2,6),stem(n, x1,'Linewidth',2), xlabel('n'), grid
title('Discrete Exponent x1(n)'),
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .4.    ')
disp('%')
disp('%')
disp('%       ')
disp('%    <ENTER>')
pause 
x2 = C.*exp(j*w0.*n);  %    
figure('Name','Discrete Harmonic Signal','NumberTitle', 'off')
subplot(2,1,1),stem(n,real(x2) ,'Linewidth',2), grid
title('Discrete Harmonic Signal: REAL [x2(n)]')
subplot(2,1,2),stem(n,imag(x2) ,'Linewidth',2), xlabel('n'), grid
title(' Discrete Harmonic Signal: IMAG [x2(n)]')
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .5.  ')
disp('%')
disp('%')
disp('%       <ENTER>')
pause
u0_m = [zeros(1,m) u0(1:(N-m))];    %    
u1_m = [zeros(1,m) u1(1:(N-m))];    %    
x1_m = [zeros(1,m) x1(1:(N-m))];    %   
figure('Name','Delayed Discrete Signals','NumberTitle', 'off')
subplot(3,1,1),stem(n,u0_m,'Linewidth',2), grid
title ('Delayed Digital Unit Impulse u0(n-m)')
subplot(3,1,2),stem(n,u1_m,'Linewidth',2), grid
title ('Delayed Digital Unit Step u1(n-m)')
subplot(3,1,3),stem(n,x1_m,'Linewidth',2),xlabel('n'), grid
title ('Delayed Discrete Exponent x1(n-m)')
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .6.   ')
disp('%')
disp('%')
disp('%        <ENTER>')
pause
x3_1 = U*rectpuls(n-n0,2*n_imp); x3_1(1:n0) = 0; %      rectpuls 
x3_2 = [zeros(1,n0) U.*u1((n0+1):(n0+n_imp))...
zeros(1,N-(n0+n_imp))];     %       
figure('Name','Discrete Rectangular and Triangular Impulses','NumberTitle', 'off')
subplot(3,1,1),stem(n,x3_1,'Linewidth',2), grid
title('Discrete Rectangular Impulse x3 1(n)')
subplot(3,1,2),stem(n,x3_2,'Linewidth',2), grid
title('Discrete Rectangular Impulse x3 2 (n)')
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .7.   ')
disp('%')
disp('%')
disp('%        <ENTER>')
pause
x4 = conv(x3_1,x3_1);           %   
L = 2*N-1;                      %  
n = 0:(L-1);                    %   
subplot(3,1,3),stem(n,x4,'Linewidth',2), xlabel('n'), grid
title('Discrete Triangular Impulse x4(n)')
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .8.     ')
disp('%')
disp('%')
disp('%           <ENTER>')
pause
n = 0:(5*N-1);                         %   
xi = repmat(B,length(n),1).*sin(n'*w); %   
ai = repmat(A,length(n),1);            %  
x5 = sum((ai.* xi)');         %    
figure('Name','Discrete Harmonic Signals and their Linear Combination','NumberTitle', 'off')
subplot(4,1,1),stem(n, xi(:,1),'Linewidth',2), grid
title('First Discrete Harmonic Signal')
subplot(4,1,2),stem(n, xi(:,2),'Linewidth',2), grid
title('Second Discrete Harmonic Signal')
subplot(4,1,3),stem(n, xi(:,3),'Linewidth',2), grid
title('Third Discrete Harmonic Signal')
subplot(4,1,4),stem(n,x5,'Linewidth',2), xlabel('n'), grid
title('Linear Combination x5(n)') 
disp('%')
disp('%')
disp('%    ,      x5  <ENTER>')
pause
mean_x5 = mean(x5);               %   
E = sum(x5.^2);                   %  
P = sum(x5.^2)/length(x5);        %   
disp('%')
disp('%')
disp(['  mean_x5 = ' num2str(mean_x5) '  E = ' num2str(E) '  P = ' num2str(P)])
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .9.      ')
disp('%')
disp('%')
disp('%          <ENTER>')
pause 
n = 0:(N-1);                       %   
x = C.*sin(w0.*n);                 %   
x6 = x.*(abs(a).^n);               %      
figure('Name','Harmonic Signal with Exponential Envelope.  Periodic Sequence of Rectangular Impulses','NumberTitle', 'off')
subplot(2,1,1),stem(n,x6,'Linewidth',2), grid
title('Harmonic Signal with Exponential Envelope x6(n)')
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .10.     ')
disp('%')
disp('%')
disp('%        <ENTER>')
pause
xp = [U.*u1(1:n_imp) zeros(1,n_imp)];    %  
p = 5;                                   %   
x7 =  repmat(xp,1,p);             %  
n = 0:(length(x7)-1);             %   
subplot(2,1,2), stem(n,x7,'Linewidth',2), xlabel('n'), grid
title('Periodic Sequence of Rectangular Impulses x7(n)') 
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .11.   ')
disp('%')
disp('%')
disp('%          <ENTER>')
pause
r_uniform = rand(1,10000);           %   
mean_uniform = mean(r_uniform);      %  .  
var_uniform = var(r_uniform);        %   
disp('%')
disp('%')
disp(['  mean_uniform = ' num2str(mean_uniform) '  var_uniform = ' num2str(var_uniform)]) 
disp('%')
disp('%')
disp('%       <ENTER>')
pause
r_r_uniform = (1/length(r_uniform)).*xcov(r_uniform);   %      
m = -(length(r_uniform)-1):(length(r_uniform)-1);       %       
figure('Name','Autocovariance Function of Uniform White Noise','NumberTitle', 'off')
stem(m,r_r_uniform,'Linewidth',2), xlabel('m'), grid
title('Autocovariance Function of Uniform White Noise')
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .12.   ')
disp('%')
disp('%')
disp('%          <ENTER>')
pause
r_norm = randn(1,10000);           %   
mean_norm = mean(r_norm);          %  .  
var_norm = var(r_norm);            %   
disp('%')
disp('%')
disp(['  mean_norm = ' num2str(mean_norm) '  var_norm = ' num2str(var_norm)]) 
disp('%')
disp('%')
disp('%      <ENTER>')
pause
R_r_norm = (1/length(r_norm)).*xcorr(r_norm);   %      
m = -(length(r_norm)-1):(length(r_norm)-1);     %      
figure('Name','ACF of White Gaussian Noise','NumberTitle', 'off')
stem(m,R_r_norm,'Linewidth',2), xlabel('m'), grid
title('ACF of White Gaussian Noise')
disp('%')
disp('%')
disp('%    <ENTER>')
pause
disp('%')
disp('%')
disp('% .13.         ')
disp('%')
disp('%')
disp('%          <ENTER>')
pause
n = 0:(N-1);                     %   
x8 = x+randn(1,N);               %     
figure('Name','Mixture of Harmonic Signal and White Gaussian Noise and ACF','NumberTitle', 'off')
subplot(2,1,1),stem(n,x8,'Linewidth',2),xlabel('n'), grid
title('Mixture of Harmonic Signal and White Gaussian Noise x8(n)')
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .14.          ')
disp('%')
disp('%')
disp('%      <ENTER>')
pause 
R = (1/N).*xcorr(x8);            %   
m = -(N-1):(N-1);                %      
subplot(2,1,2),stem((m),R,'Linewidth',2),xlabel('m'), grid
title('ACF R(m)')
disp('%')
disp('%')
disp('%           R(N)  <ENTER>') 
pause 
disp('%')
disp('%')
disp(['  var_x8 = ' num2str(var(x8))])
disp(['  R(N) = ' num2str(R(N))])
disp('%')
disp('%')
disp('%    <ENTER>')
pause 
disp('%')
disp('%')
disp('% .15.       ')
r_normMean = randn(1,10000)+Mean;      %       
r_normVar = sqrt(Var).*randn(1,10000); %      
r_normMeanVar = sqrt(Var).*randn(1,10000)+ Mean; %         
MAX = max([r_norm r_normMean r_normVar r_normMeanVar]); 
%       
disp('%')
disp('%')
disp('%        <ENTER>')
pause
figure('Name','White Gaussian Noises with different statistics','NumberTitle', 'off')
subplot(4,1,1), plot(r_norm), grid, ylim([-MAX MAX])
title(strcat([' Mean value = ',num2str(mean(r_norm)),'   Variance = ',num2str(var(r_norm))]))
subplot(4,1,2), plot(r_normMean), grid, ylim([-MAX MAX])
title(strcat([' Mean value = ',num2str(mean(r_normMean)),'   Variance = ',num2str(var(r_normMean))]))
subplot(4,1,3), plot(r_normVar), grid, ylim([-MAX MAX])
title(strcat([' Mean value = ',num2str(mean(r_normVar)),'   Variance = ',num2str(var(r_normVar))]))
subplot(4,1,4), plot(r_normMeanVar), xlabel('n'), grid, ylim([-MAX MAX])
title(strcat([' Mean value = ',num2str(mean(r_normMeanVar)),'   Variance = ',num2str(var(r_normMeanVar))]))
disp('%')
disp('%')
disp('%        <ENTER>')
pause
figure('Name','Histograms with different statistics','NumberTitle', 'off')
subplot(4,1,1), hist(r_norm), grid, xlim([-MAX MAX]) 
title(strcat([' Mean value = ',num2str(mean(r_norm)),'   Variance = ',num2str(var(r_norm))]))
subplot(4,1,2), hist(r_normMean), grid, xlim([-MAX MAX])
title(strcat([' Mean value =  ',num2str(mean(r_normMean)),'   Variance = ',num2str(var(r_normMean))]))
subplot(4,1,3), hist(r_normVar), grid, xlim([-MAX MAX])
title(strcat([' Mean value = ',num2str(mean(r_normVar)),'   Variance = ',num2str(var(r_normVar))]))
subplot(4,1,4),hist(r_normMeanVar), grid, xlim([-MAX MAX])
title(strcat([' Mean value = ',num2str(mean(r_normMeanVar)),'   Variance = ',num2str(var(r_normMeanVar))]))
disp('%')
disp('%')
disp('%  ')