Cleaning Robot
Level 4 Cleaning Robot We have to plan a path for a cleaning robot to clean a rectangular room floor of size NxM. The room floor paved with square tiles whose size fits the cleaning robot (1 × 1). There are clean tiles and dirty tiles, and the robot can change a dirty tile to a clean tile by visiting the tile. Also there may be some obstacles (furniture) whose size fits a tile in the room. If there is an obstacle on a tile, the robot cannot visit it. The robot moves to an adjacent tile with one move. The tile onto which the robot moves must be one of four tiles (i.e., east, west, north or south) adjacent to the tile where the robot is present. The robot may visit a tile twice or more. Your task is to write a program which computes the minimum number of moves for the robot to change all dirty tiles to clean tiles, if ever possible. Time limit: 1s (C/C++), 2s (Java) Submit limit: 10 times Example: The following is a room of size 5x7, with 3 dirty tiles, and 0 furniture. The answer for this case is 8. Input The input consists of multiple maps, the first line is the number of test case T (T < = 50). Each test case begins with N and M representing the size of the room. ( 5 =< N, M <= 100) The next N line representing the arrangement of the room with following describe: 0 : a clean tile 1 : a dirty tile 2 : a piece of furniture (obstacle) 3 : the robot (initial position) In the map the number of dirty tiles does not exceed 10 and there is only one robot. Output Print each test case on two lines, the first line of each test case is "Case #x", where x is the test case number. The next line is the minimum number of moves for the robot to change all dirty tiles to clean tiles. If the map includes dirty tiles which the robot cannot reach, your program should output -1. Sample Input 5 5 7 0 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 5 15 0 0 0 0 2 0 2 0 0 0 0 1 2 0 1 0 0 0 1 0 2 0 2 2 0 1 2 0 0 0 2 1 0 2 0 1 0 2 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 1 2 0 0 2 0 0 0 2 1 0 2 0 0 0 0 0 3 0 0 0 0 ............... Output Case #1 8 Case #2 38 Case #3 37 Case #4 -1 Case #5 49 Case #1 38 Case #2 37 Case #3 52 Case #4 -1 Case #5 78 Case #6 43 Case #7 28 Case #8 3 Case #9 54 Case #10 50 Case #11 -1 Case #12 12 Case #13 -1 Case #14 99 Case #15 137 Case #16 117 Case #17 175 Case #18 115 Case #19 132 Case #20 38 Case #21 -1 Case #22 -1 Case #23 140 Case #24 46 Case #25 60 Case #26 56 Case #27 186 Case #28 18 Case #29 140 Case #30 177 Case #31 214 Case #32 207 Case #33 35 Case #34 -1 Case #35 466 Case #36 31 Case #37 228 Case #38 157 Case #39 160 Case #40 120 Case #41 301 Case #42 362 Case #43 272 Case #44 198 Case #45 490 Case #46 83 Case #47 152 Case #48 165 Case #49 333 Case #50 288 Time: 1.156000000 s. #include <iostream> #include <time.h> using namespace std; int oo = 2000000000; int T, n, m, result, mp[101][101]; int xx1, yy1, p, step[11][11], point[11][2]; bool vs[101][101], bt[11], noDir; int dx[4] = { 0, 0, -1, 1 }; int dy[4] = { -1, 1, 0, 0 }; int arr[40001][3]; int head, tail; void init(){ head = 0, tail = 0; for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++) vs[i][j] = false; } } void push(int x, int y, int cnt){ arr[tail][0] = x, arr[tail][1] = y, arr[tail++][2] = cnt; } void pop(){ head++; } bool isEmpty(){ return head == tail; } int getX(){ return arr[head][0]; } int getY(){ return arr[head][1]; } int getC(){ return arr[head][2]; } // 0:left, 1:right, 2:down, 3:up void bfs(int i_start, int i_stop){ init(); int x_start = point[i_start][0]; int y_start = point[i_start][1]; int x_stop = point[i_stop][0]; int y_stop = point[i_stop][1]; push(x_start, y_start, 0); vs[x_start][y_start] = true; while(!isEmpty()){ int x = getX(); int y = getY(); int c = getC(); pop(); if(x == x_stop && y == y_stop){ step[i_start][i_stop] = c; step[i_stop][i_start] = c; return; } for(int dir = 0; dir < 4; dir++){ int xx = x + dx[dir]; int yy = y + dy[dir]; if(xx >= 0 && xx < n && yy >= 0 && yy < m && mp[xx][yy] != 2 && !vs[xx][yy]){ vs[xx][yy] = true; push(xx, yy, c+1); } } } } void backtracking(int index, int cnt, int cntStep){ if(cnt == p){ if(cntStep < result) result = cntStep; return; } else if(result < cntStep){ return; } for(int i = 1; i < p; i++){ if(!bt[i]){ cntStep += step[index][i]; bt[i] = true; backtracking(i, cnt+1, cntStep); cntStep -= step[index][i]; bt[i] = false; } } } int main(){ freopen("input.txt", "r", stdin); // Calc clock clock_t time_start, time_end; time_start = clock(); cin >> T; for(int tc = 1; tc <= T; tc++){ // Initial && Input p = 1, result = oo, noDir = false; for(int i = 0; i < p; i++) bt[i] = false; cin >> n >> m; for(int i = 0; i < n; i++){ for(int j =0; j < m; j++){ cin >> mp[i][j]; if(mp[i][j] == 3){ xx1 = i, yy1 = j; point[0][0] = i, point[0][1] = j; step[0][0] = 0; } else if(mp[i][j] == 1){ point[p][0] = i, point[p][1] = j; step[p][p] = 0; p++; } } } // Solve Problem // Sinh ma tran ke for(int i = 0; i < p-1; i++){ for(int j = i+1; j < p; j++){ step[i][j] = oo, step[j][i] = oo; bfs(i, j); if(step[i][j] == oo) noDir = true; } } // Solve Probblem if(noDir){ cout << "Case #" << tc << endl << -1 << endl; } else{ bt[0] = true; backtracking(0, 1, 0); cout << "Case #" << tc << endl << result << endl; } } // Calc Time time_end = clock(); cout.setf(ios::fixed); cout.precision(9); cout << "Time: " << double (time_end - time_start) / double (CLOCKS_PER_SEC) << " s." << endl; return 0; }
Leave a Comment