Untitled
unknown
plain_text
a year ago
735 B
7
Indexable
from mlxtend.frequent_patterns import apriori from mlxtend.frequent_patterns import association_rules import pandas as pd # Load the dataset from CSV file df = pd.read_csv('/content/bread basket.csv') # Convert the items column to a one-hot encoded format oht = df.groupby(['Transaction', 'Item'])['Item'].count().unstack().reset_index().fillna(0).set_index('Transaction') oht = oht.applymap(lambda x: 1 if x > 0 else 0) # Generate frequent itemsets frequent_itemsets = apriori(oht, min_support=0.2, use_colnames=True) # Generate association rules rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7) print("Frequent itemsets:") print(frequent_itemsets) print("\nAssociation rules:") print(rules)
Editor is loading...
Leave a Comment