Untitled
unknown
python
2 years ago
1.3 kB
4
Indexable
import tensorflow as tf
import numpy as np
def predict_and_calculate_bce_losses(model, images, labels):
# Check the available GPUs
gpus = tf.config.experimental.list_physical_devices('GPU')
if not gpus:
raise SystemError("No GPUs found for parallel processing")
# Split images and labels for each GPU
num_gpus = len(gpus)
image_splits = np.array_split(images, num_gpus)
label_splits = np.array_split(labels, num_gpus)
# Initialize BCE loss function
bce_loss_function = tf.keras.losses.BinaryCrossentropy()
# List to store all BCE losses
all_bce_losses = []
# Predict and calculate BCE loss for each GPU's data
for i in range(num_gpus):
with tf.device(f'/GPU:{i}'):
# Predict on this split
predictions = model.predict(image_splits[i])
# Calculate BCE loss for each prediction
losses = bce_loss_function(label_splits[i], predictions)
# Store the losses
all_bce_losses.extend(losses.numpy())
return np.array(all_bce_losses)
# Usage of the function
# model: Your pre-trained model
# images: Numpy array of your images
# labels: Numpy array of your labels
# bce_losses = predict_and_calculate_bce_losses(model, images, labels)Editor is loading...
Leave a Comment