Untitled
unknown
plain_text
4 years ago
1.8 kB
7
Indexable
def get_baseline_regression_model(input_shape, n_classes): input_1 = Input(shape=input_shape, name="input_1") conv_1 = Conv2D(96, kernel_size=11, kernel_initializer='he_normal')(input_1) conv_1 = BatchNormalization()(conv_1) conv_1 = Activation('relu')(conv_1) pool_1 = MaxPooling2D((2, 2))(conv_1) conv_2 = Conv2D(128, kernel_size=5, kernel_initializer='he_normal')(pool_1) conv_2 = BatchNormalization()(conv_2) conv_2 = Activation('relu')(conv_2) pool_2 = MaxPooling2D((2, 2))(conv_2) conv_3 = Conv2D(256, kernel_size=3, kernel_initializer='he_normal')(pool_2) conv_3= BatchNormalization()(conv_3) conv_3 = Activation('relu')(conv_3) conv_4 = Conv2D(256, kernel_size=3, kernel_initializer='he_normal')(conv_3) conv_4 = BatchNormalization()(conv_4) conv_4 = Activation('relu')(conv_4) pool_4 = MaxPooling2D((2, 2))(conv_4) conv_5 = Conv2D(256, kernel_size=3, kernel_initializer='he_normal')(pool_4) conv_5 = BatchNormalization()(conv_5) conv_5 = Activation('relu')(conv_5) pool_5 = MaxPooling2D((2, 2))(conv_5) conv_6 = Conv2D(256, kernel_size=3, kernel_initializer='he_normal')(pool_5) conv_6 = BatchNormalization()(conv_6) conv_6 = Activation('relu')(conv_6) pool_6 = MaxPooling2D((2, 2))(conv_6) flatten = Flatten()(pool_6) fc_1 = Dense(64, activation='relu')(flatten) fc_1 = Dropout(0.6)(fc_1) fc_2 = Dense(128, activation='relu')(fc_1) fc_2 = Dropout(0.6)(fc_2) out = Dense(n_classes*2, activation='tanh')(fc_2) model = Model(input_1, out) ''' for layer in model.layers: print(layer.name, layer.trainable) ''' return model
Editor is loading...