Untitled
unknown
python
a year ago
2.5 kB
11
Indexable
tiles = 2
tile = img.shape[2] // tiles
imgs = []
for i in range(tiles):
for j in range(tiles):
imgs.append(img[:, :, i * tile:(i + 1) * tile, j * tile:(j + 1) * tile])
# change bboxes:
# if a bbox is in the image, it has to have all coordinates > 0 and x2 and y2 < image size
bboxes_ = []
for i in range(tiles):
for j in range(tiles):
bboxes_.append(bboxes - torch.tensor([j * tile, i * tile, j * tile, i * tile]).to(device))
# check on which tile a bbox is
for i in range(tiles*tiles):
bboxes_[i] = bboxes_[i][torch.logical_not(
torch.logical_or((bboxes_[i] < 0).any(dim=2), (bboxes_[i] > imgs[i].shape[3]).any(dim=2)))]
# pad bboxes to have the same number of bboxes
max_num_bboxes = max([bboxes_[i].shape[0] for i in range(tiles*tiles)])
for i in range(tiles*tiles):
bboxes_[i] = torch.cat([bboxes_[i], torch.zeros((max_num_bboxes - bboxes_[i].shape[0], 4)).to(device)])
bboxes_batch = torch.stack([bb for bb in bboxes_])*tiles
img_batch = torch.stack([im[0] for im in imgs])
# Upscale image tensor to 1024,1024
img_batch = torch.nn.functional.interpolate(img_batch, size=1024, mode='bilinear', align_corners=False)
outputs, ref_points, centerness, outputs_coord, masks = model(img_batch, bboxes_batch)
for _ in range(tiles*tiles):
if outputs[_]['pred_boxes'].shape[-1] != 4:
outputs[_]['pred_boxes'] = torch.zeros((1,1, 4)).to(device)
outputs[_]['scores'] = torch.zeros((1,1)).to(device)
outputs[_]['box_v'] = torch.zeros((1,1)).to(device)
merge_bboxes = []
for i in range(tiles*tiles):
merge_bboxes.append((outputs[i]["pred_boxes"] / tiles + torch.tensor([(i % tiles) * img.shape[3] // tiles, (i // tiles) * img.shape[2] // tiles, (i % tiles) * img.shape[3] // tiles, (i // tiles) * img.shape[2] // tiles]).to(device) / 1024)[0])
bboxes_pred = torch.cat(merge_bboxes)
scores = torch.cat([outputs[i]["scores"][0] for i in range(tiles*tiles)])
box_v = torch.cat([outputs[i]["box_v"][0] for i in range(tiles*tiles)])
outputs = [{"pred_boxes": bboxes_pred, "scores": scores, "box_v": box_v}]
# po ekstrakciji prototipov s featurjev pa nekaj takega:
shape = shape[exemplars.norm(dim=-1) > 0]
shape = shape.repeat(bs, 1, 1)
exemplars = exemplars[exemplars.norm(dim=-1) > 0]
exemplars = exemplars.repeat(bs, 1, 1)
prototype_embeddings = torch.cat([exemplars, shape], dim=1)Editor is loading...
Leave a Comment