Untitled
unknown
python
a year ago
2.5 kB
5
Indexable
tiles = 2 tile = img.shape[2] // tiles imgs = [] for i in range(tiles): for j in range(tiles): imgs.append(img[:, :, i * tile:(i + 1) * tile, j * tile:(j + 1) * tile]) # change bboxes: # if a bbox is in the image, it has to have all coordinates > 0 and x2 and y2 < image size bboxes_ = [] for i in range(tiles): for j in range(tiles): bboxes_.append(bboxes - torch.tensor([j * tile, i * tile, j * tile, i * tile]).to(device)) # check on which tile a bbox is for i in range(tiles*tiles): bboxes_[i] = bboxes_[i][torch.logical_not( torch.logical_or((bboxes_[i] < 0).any(dim=2), (bboxes_[i] > imgs[i].shape[3]).any(dim=2)))] # pad bboxes to have the same number of bboxes max_num_bboxes = max([bboxes_[i].shape[0] for i in range(tiles*tiles)]) for i in range(tiles*tiles): bboxes_[i] = torch.cat([bboxes_[i], torch.zeros((max_num_bboxes - bboxes_[i].shape[0], 4)).to(device)]) bboxes_batch = torch.stack([bb for bb in bboxes_])*tiles img_batch = torch.stack([im[0] for im in imgs]) # Upscale image tensor to 1024,1024 img_batch = torch.nn.functional.interpolate(img_batch, size=1024, mode='bilinear', align_corners=False) outputs, ref_points, centerness, outputs_coord, masks = model(img_batch, bboxes_batch) for _ in range(tiles*tiles): if outputs[_]['pred_boxes'].shape[-1] != 4: outputs[_]['pred_boxes'] = torch.zeros((1,1, 4)).to(device) outputs[_]['scores'] = torch.zeros((1,1)).to(device) outputs[_]['box_v'] = torch.zeros((1,1)).to(device) merge_bboxes = [] for i in range(tiles*tiles): merge_bboxes.append((outputs[i]["pred_boxes"] / tiles + torch.tensor([(i % tiles) * img.shape[3] // tiles, (i // tiles) * img.shape[2] // tiles, (i % tiles) * img.shape[3] // tiles, (i // tiles) * img.shape[2] // tiles]).to(device) / 1024)[0]) bboxes_pred = torch.cat(merge_bboxes) scores = torch.cat([outputs[i]["scores"][0] for i in range(tiles*tiles)]) box_v = torch.cat([outputs[i]["box_v"][0] for i in range(tiles*tiles)]) outputs = [{"pred_boxes": bboxes_pred, "scores": scores, "box_v": box_v}] # po ekstrakciji prototipov s featurjev pa nekaj takega: shape = shape[exemplars.norm(dim=-1) > 0] shape = shape.repeat(bs, 1, 1) exemplars = exemplars[exemplars.norm(dim=-1) > 0] exemplars = exemplars.repeat(bs, 1, 1) prototype_embeddings = torch.cat([exemplars, shape], dim=1)
Editor is loading...
Leave a Comment