Untitled
unknown
plain_text
a year ago
1.7 kB
3
Indexable
This is the code block from our code and we are supposed to run an API through this- import pandas as pd from nltk.corpus import stopwords import string import pickle from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from string import digits from sklearn.feature_extraction.text import CountVectorizer import numpy as np import pdb import re #from fuzzywuzzy import fuzz from feature_engineering import * from param_config import config from model_loading import loading_model import time start_time = time.time() model_loading_start= time.time() models = loading_model() tfidf_matrix,tf_count_matrix,tfidf_vector,count_vector,df_act,Matching_data,embedding_dict,df_act_context = models.load_models() model_loaded_time = time.time() print(f"Models loaded in {model_loaded_time - model_loading_start} seconds.. ") SO if u see carefully , models loading is there and it is trying to load below models- -rw-r--r--. 1 root root 7134602 Nov 9 19:59 df_act_context.joblib -rw-r--r--. 1 root root 104156726 Nov 9 19:59 glove_vector_dict.joblib -rw-r--r--. 1 root root 7134602 Nov 9 19:59 raw_data.joblib -rw-r--r--. 1 root root 475432850 Nov 9 19:59 tf_count.joblib -rw-r--r--. 1 root root 201542 Nov 9 19:59 tf_countvector.joblib -rw-r--r--. 1 root root 475432850 Nov 9 19:59 tfidf.joblib -rw-r--r--. 1 root root 348059 Nov 9 19:59 tfidf_vector.joblib -rw-r--r--. 1 root root 1899 Nov 9 19:53 unique_train_data_matrix.joblib These models take more than 5 mins of time to load , and we cant afford to waste 5 mins everytime on an API call.. how to avoid this. Is there any other better solution, can u help here please.
Editor is loading...
Leave a Comment