Untitled
unknown
plain_text
2 years ago
1.7 kB
7
Indexable
This is the code block from our code and we are supposed to run an API through this-
import pandas as pd
from nltk.corpus import stopwords
import string
import pickle
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from string import digits
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
import pdb
import re
#from fuzzywuzzy import fuzz
from feature_engineering import *
from param_config import config
from model_loading import loading_model
import time
start_time = time.time()
model_loading_start= time.time()
models = loading_model()
tfidf_matrix,tf_count_matrix,tfidf_vector,count_vector,df_act,Matching_data,embedding_dict,df_act_context = models.load_models()
model_loaded_time = time.time()
print(f"Models loaded in {model_loaded_time - model_loading_start} seconds.. ")
SO if u see carefully , models loading is there and it is trying to load below models-
-rw-r--r--. 1 root root 7134602 Nov 9 19:59 df_act_context.joblib
-rw-r--r--. 1 root root 104156726 Nov 9 19:59 glove_vector_dict.joblib
-rw-r--r--. 1 root root 7134602 Nov 9 19:59 raw_data.joblib
-rw-r--r--. 1 root root 475432850 Nov 9 19:59 tf_count.joblib
-rw-r--r--. 1 root root 201542 Nov 9 19:59 tf_countvector.joblib
-rw-r--r--. 1 root root 475432850 Nov 9 19:59 tfidf.joblib
-rw-r--r--. 1 root root 348059 Nov 9 19:59 tfidf_vector.joblib
-rw-r--r--. 1 root root 1899 Nov 9 19:53 unique_train_data_matrix.joblib
These models take more than 5 mins of time to load , and we cant afford to waste 5 mins everytime on an API call.. how to avoid this.
Is there any other better solution, can u help here please.
Editor is loading...
Leave a Comment